題號: (

共一頁之第全頁

- 1. (10%) Let X_1, \dots, X_n be a random sample from a population with probability density function $f(x|\theta) = \frac{1}{\theta} \mathbb{1}_{\{1 < x < \theta\}}$. Derive the probability density function of $X_{\{1\}} = \min\{X_1, \dots, X_n\}$.
- 2. Let X_1, \dots, X_n be a random sample from $N(\theta, \theta^2)$ with $\theta > 0$.
- (2a) (10%) Let $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $S^2 = \frac{1}{(n-1)} \sum_{i=1}^{n} (X_i \bar{X})^2$. Show that (\bar{X}, S^2) is a sufficient statistic for θ but it is not a complete sufficient statistic.
- (2b) (10%) Let $W(X_1, \dots, X_n) = X_1 + X_1^2$. Show that $E[W(X_1, \dots, X_n) | (\bar{X}, S^2)]$ is an unbiased estimator of $(\theta + \theta^2)$, and $var(E[W(X_1, \dots, X_n) | (\bar{X}, S^2)]) \leq var(W(X_1, \dots, X_n))$.
- 3. Let X_1, \dots, X_n be a random sample from Bernoulli(p) with $n \geq 2$ and p > 0.
- (3a) (5%) Find the maximum likelihood estimator, say, $\hat{\tau}$, of $\tau(p) = p(1-p)$ and show that $\hat{\tau}$ is not an unbiased estimator of $\tau(p)$.
- (3b) (10%) Find the uniformly minimum variance unbiased estimator say, $\tilde{\tau}$, of τ and show that its variance cannot attain the the Cramér-Rao lower bound.
- (3c) (10%) Find the asymptotic distributions of $\hat{\tau}$ for p=1/2 and $p\neq 1/2$.
- 4. Let X_1, \dots, X_n be a random sample from $N(\mu, \sigma^2)$ with σ^2 being a known positive value.
- (4a) (5%) Find a uniformly most powerful size α test of $H_0 \circ \mu \ge \mu_0$ versus $H_A : \mu < \mu_0$, where μ_0 is a known constant.
- (4b) (15%) Find an expression for the power function, say, $\beta(\mu)$ of the test in (4a), and show that $\beta(\mu) \ge \alpha$ for $\mu < \mu_0$.
- (4c) (10%) Show that there does not exist a uniformly most powerful size α test of $H_0: \mu = \mu_0$ versus $H_A: \mu \neq \mu_0$.
- 5. Consider the simple linear regression model $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, where ε_i 's are independent and identically distributed with the normal distribution $N(0, \sigma^2)$, $i = 1, \dots, n$.
- (5a) (5%) Compute the maximum likelihood estimators of β_0 , β_1 , and σ^2 .
- (5b) (10%) Let $\hat{\beta}_0$ and $\hat{\beta}_1$ denote separately the maximum likelihood estimators of β_0 and β_1 . Show that $\hat{\beta}_1$ is distributed as $N(\beta_1, \sigma^2/\sum_{i=1}^n (x_i \bar{x})^2)$ and is independent of the sample mean $\bar{Y} = \sum_{i=1}^n Y_i$.