國立台灣大學九十二學年度碩士班招生考試試題

科目:應用數學(C)

頁之第 共

- 1. [3 pt.] (a) Find the eigenvalues λ_1 , λ_2 and normalized eigenvectors \mathbf{e}_1 , \mathbf{e}_2 of $\mathbf{A} = \begin{pmatrix} 3 & 4 \\ 4 & 3 \end{pmatrix}$.
 - [3 pt.] (b) For $\mathbf{v}^T = (1, 2)$, find α_1 , α_2 such that $\mathbf{v} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2$.

[9 pt.] (c) Find solutions to
$$\begin{cases} 3x_1 + 4x_2 = \lambda x_1 + 1 \\ 4x_1 + 3x_2 = \lambda x_2 - 1 \end{cases}$$
, for i) $\lambda = 2$, and ii) $\lambda = \lambda_1$ or λ_2 .

2. [7 pt.] (a) Use Gauss-Jordan reduction to obtain the solution to $\begin{cases} 3x_1 + 2x_2 + x_3 = 11 \\ 2x_1 + 3x_2 + x_3 = 13 \\ x_1 + x_2 + 4x_3 = 12 \end{cases}$.

[6 pt.] (b) Write the set of linear equations in (a) as Ax = c. Find A^{-1} explicitly and use this to solve for x.

3. Let $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ and $B = A^5 - 3A^4 + 2A - I$.

[8 pt.] (a) Find the eigenvalues of B and determine whether B is positive definite.

[4 pt.] (b) Determine the elements of A⁵⁰

4. [10 pt.] For $\mathbf{A} = \begin{pmatrix} 5 & 2 \\ 2 & 3 \end{pmatrix}$ and $\mathbf{B} \neq \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, determine the eigenvalues and eigenvectors of $\mathbf{A} \mathbf{x} = \lambda \mathbf{B} \mathbf{x}$. Verify that the eigenvectors are orthogonal relative to both \mathbf{A} and \mathbf{B} .

5. [10 pt.] Find the general solution to $x^2y'' + 3xy' - 3y = 0$.

6. [10 pt.] Find a particular solution of $y'' + y' = 6y = e^{-\alpha}$ by both the method of undetermined coefficients and the method of variation of parameters.

7. [3 pt.] (a) Define analyticity.

- [3 pt.] (a) Define analyticity. [3 pt.] (b) If $f(x) = \sum_{n=0}^{\infty} a_n x^n$ exists, show that $a_n = \frac{f^{(n)}(0)}{n!}$. [4 pt.] (c) Define what is a regular singular point (at x = 0) for y'' + p(x)y' + q(x)y = 0, and give the indicial equation.
- 8. [10 pt.] Solve $x^2y'' + xy' + x^2y = 0$ for the Bessel function of first kind of order zero by series expansion.
- 9. [5 pt.] (a) For f(x) = |x|, $-\pi < x < \pi$ and $f(x + 2\pi) = f(x)$, plot f(x) and find its Fourier series. [5 pt.] (b) Solve y'' + y = g(t) by using Laplace transform, for initial conditions y(0) = 0, y'(0) = 0, and

$$g(t) = \begin{cases} 0 & t < 3\\ (t-3)/4 & 3 < t < 7,\\ 1 & t > 7 \end{cases}$$