科目:工程數學(A)

題號: 228

共 / 頁之第 全 頁

- 1. (9%) Let a, b, c be arbitray vectors in three-dimensional (Euclidean) space. They may be linearly independent or may be linearly dependent.
 - (a) Are $a \times b$ and $b \times a$ linearly independent? Why? Does your answer depend upon whether or not a and b are linearly independent?
 - (b) Are $(a \times b) \times c$, $(b \times c) \times a$, and $(c \times a) \times b$ linearly independent? Why? (Prove your answer.) Does your answer depend upon whether or not a, b, and c are linearly independent?
- 2. (12%) Let

$$A = \left[\begin{array}{cccc} 4 & -1 & 0 & 0 \\ -1 & 4 & 0 & 0 \\ 0 & 0 & 4 & -1 \\ 0 & 0 & -1 & 4 \end{array} \right]$$

and $Q(x_1, x_2, x_3, x_4) = 4x_1^2 - 2x_1x_2 + 4x_2^2 + 4x_3^2 - 2x_3x_4 + 4x_4^2$

- (a) Find the eigenvalues and normalized eigenvectors of A
- (b) Discuss whether or not the normalized eigenvectors can be uniquely determined.
- (c) Is $Q(x_1, x_2, x_3, x_4)$ always positive or negative for any real numbers x_1, x_2, x_3, x_4 ? Why? (Prove your answer.)
- 3. (12%) Let $f(x) = \cos \pi x$ be a real-valued function defined only on the unit interval, $0 \le x \le 1$.
 - (a) Find the Fourier series representation of f(x).
 - (b) Find the Fourier sine series representation of f(x):
 - (c) Which one of the above two representations does give a better evaluation for f(x) at x = 0? Why?
 - (d) Which one of the above two representations does give a better evaluation for $\frac{df}{dx}(x)$ at x = 0? Why?
- 4. (15%) Solve for y(x) the following initial value problem,

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = xe^{-x},$$

$$y = 1 \text{ at } x = 0,$$

$$\frac{dy}{dx} = 0 \text{ at } x = 0.$$

5. (18%) Solve the following boundary value problem.

$$\begin{split} \frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} &= 0, \\ \frac{\partial f}{\partial r} &= 2 \cos \theta \text{ for } r = 2, \\ f &= 3r \cos \theta \text{ as } r \to \infty, \end{split}$$

for the function $f(r,\theta)$ defined in the region $2 \le r < \infty, 0 \le \theta < 2\pi$ of a plane, for which (r,θ) is the polar coordinates.

- 6. (23%) Let z, z_0 be complex variables and f(z) be a complex function.
 - (a) (15%) Evaluate the integral $\int_C (z-z_0)^n dz$, (n=integer), along the circle C with center at z_0 and radius r described in the counterclockwise direction.
 - (b) (8%) Find $\int_C f(z)dz$ if f(z)=k (a constant), $z,\frac{1}{z},\frac{2\sinh^2z+3\cosh3z}{z}$, respectively, where C is any simple closed contour having $z_0=0$ in its interior, and C is taken in the positive direction.
- 7. (11%) Find the extremals for the following functionals:
 - (a) $v(y(x)) = \int_2^3 y^2 (1 \frac{dy}{dx})^2 dx$ with y(2) = 1 and y(3) = 3;
 - (b) $v(y(x), z(x)) = \int_0^1 y'z'dx$ with y(0) = 0, y'(0) = 1, z(0) = 0, and z'(0) = 1.

試題隨卷繳回