題號:281

頁

共 ) 頁之第

1. (30 %). Let M be a positive-definite symmetric  $(n \times n)$  real matrix; i.e.,  $\mathbf{x}^T \mathbf{M} \mathbf{x} > 0$  if  $\mathbf{x} \neq 0$  where  $\mathbf{x}$  is the  $n \times 1$  column vector with real entries.

- (a). (10%). Show that all the eigenvalues of M are positive.
- (b). (10%). Consider the following iterative process: with an initially given unit vector  $\mathbf{v}_1$ , for i=1,2,3,...,
  - (i) Compute  $\mathbf{u}_i = \mathbf{M}\mathbf{v}_i$ ,
  - (ii) Find  $\mathbf{v}_{i+1} = \mathbf{u}_i / \|\mathbf{u}_i\|$ ,

where  $\|\mathbf{u}_i\|$  denotes the magnitude of  $\mathbf{u}_i$ . Show that if the above process converges, the sequence  $\{\mathbf{v}_i, i=1,2,3,...\}$  converges to an eigenvector of  $\mathbf{M}$  with the associated eigenvalue approached by  $\{\|\mathbf{u}_i\|, i=1,2,3,...\}$ . (Note that you may assume n=2 for partial credits.)

(c). (10%). Solve the following problem

$$\max_{\mathbf{x} \in \mathbf{R}^n} \mathbf{x}^T \mathbf{M} \mathbf{x}_i \qquad \text{subject to the constraint} \quad \|\mathbf{x}\| = 2,$$

in terms of the eigenvector and eigenvalue of M. (Note that you may assume n=2 for partial credits.)

2. (35%).

(a). Let a be a positive constant and f(t) be a continuous function on [0, L], L > 0.

$$ty' + ay = 0$$

which is bounded as  $t \to 0^+$  is the trivial solution.

(ii) (10%). Let f(0) = b. Show that the equation

$$ty' + ay = f(t)$$

has a unique solution which is bounded as  $t \to 0^+$  and find the limit of this solution as  $t \to 0^+$ .

(b). (20%). Given that the equation

$$ty'' - (2t+1)y' + 2y = 0 (t > 0)$$

has a solution of the form  $e^{ct}$  for some c, find the general solution.

題號:28

共 一 頁之第 一 頁

3. (35%). Consider the Poisson equation

$$\nabla^2 \varphi(x, y, z) = f(x, y, z)$$

in a bounded domain  $\Omega$  enclosed by the surface S with unit outward normal  $\hat{\mathbf{n}}$ .

(a). (15%). If the boundary condition is of the Neumann type; i.e.,  $\frac{\partial \varphi}{\partial n} = g(x, y, z)$  on the surface S, show that

$$\int\limits_{\Omega} f(x,y,z)dV = \int\limits_{S} g(x,y,z)ds,$$

where dV and ds are the infinitesimal volume and surface elements, respectively. Also provide the physical interpretation of the above equation.

(b). (20%). For simplicity, consider a two-dimensional case in a unit square domain  $\Omega=(0,1)\times(0,1)$  as shown in Figure 1. The source term  $f(x,y)=1,\ \forall\,(x,y)\in\Omega,$  and the boundary conditions are of the Dirichlet type:  $\varphi=-1$  on x=0,x=1 and y=1; but  $\varphi\equiv0$  on y=0. Solve for  $\varphi(x,y)$  and evaluate the normal derivatives of  $\varphi(x,y)$  along the boundaries.



Figure 1: Problem 3(b).