
題號: 413

共 2 頁之第 / 頁

※注意:請於答案卷上標明題號,並依序作答。

- 1. (5%)求取下列數列 $x_n(n=1,2,3,\cdots)$ 的最大項之值 $x_n=\frac{n^2}{2^n}$
- 2. (5%)求取下列數列 $x_n(n=1,2,3,\cdots)$ 的最小項之值 $x_n=n+\frac{100}{n}$
- 3. (10%)求下列式子的極限値 $\lim_{x\to 0} \left(\frac{1+x\cdot 2^x}{1+x\cdot 3^x}\right)^{\frac{1}{x^2}}$
- 4. (10%)求下列級數之和 $\frac{1}{1\cdot 2\cdot 3} + \frac{1}{3\cdot 4\cdot 5} + \frac{1}{5\cdot 6\cdot 7} + \cdots$
- 5. (10%)在 $\frac{x}{a}$ + $\frac{y}{b}$ =1的條件下,求函數f(x,y)= x^2 + y^2 的「極値」與「極値點 座標」,並註明它是哪一類型的極値。
- 6. (10%)在一個半徑爲a的空心圓碗(像半球形)中,放置一根長度爲l (l>2a)的棒子,求棒子的平衡位置,也就是棒子與碗口平面的夾角。

7. (10%) A drug is carried into an organ of volume $V cm^3$ by a liquid that enters the organ at the rate of $a cm^3/sec$ and leave it at the rate of $b cm^3/sec$. The concentration of the drug in the liquid entering the organ is $c g/cm^3$. If the concentration of the drug in the organ at time t is increasing at the rate of

$$x'(t) = \frac{1}{V}(ac - bx_0)e^{-bt/V}$$

 $g/cm^3/sec$, and the concentration of the drug in the organ initially is $x_0 g/cm^3$. What is the concentration of the drug at time t?

科目:應用微積分

題號:41

共 2 頁之第 2 頁

0	(100/) Fi-14.
8.	(10%) Find the maximum and minimum value of function $f(x, y) = 2x - 3y + 1$
	subject to the constraint $2x^2 + 3y^2 - 125 = 0$. The maximum value is;
	the minimum value is
9.	(10%) Based on data collected during an experiment, a biologist found that the number of fruit flies with a limited food supply could be approximately by the exponential model
	$N(t) = \frac{1000}{1 + 24e^{-0.02 t}}$
	where t denotes the number of days since the beginning of the experiment. What
	is the average number of fruit flies in the colony in first 10 days of the experiment?
	; What is the average number of fruit flies in the colony in
	first 20 days of the experiment?
10	(200) 77
10.	(10%) The population density of a certain city is described by the function $f(x, y) = 10{,}000e^{-0.2 x -0.1 y }$
	where the origin (0,0) gives the location of city hall. What is the population
	inside the rectangular area described by
	$R = \{(x,y)\} - 10 \le x \le 10; -5 \le y \le 5\}$
	if x and y are in miles?
11.	(10%) Suppose x units of labor and y units of capital are required to produce
	$f(x,y) = 100x^{3/4}y^{1/4}$
	units of a certain product. If each unit of labor costs \$200 and each unit of capital
	cost \$300 and a total of \$60,000 is available for production, how many units of
	labor and how many units of capital should be used in order to maximize
	production? Labor = units; Capital = units.

試題隨卷繳回