題號:458

共 4 頁之第 / 頁

※注意:作答時,請於答案卷上標明作答之大題及其題號,並依序作答。

- 一、單選選擇題(20%, 每題 2%, 不倒扣, 答案卷上需按題序答題, 否則不予計分)
- 1. Which one of the following is true for an ideal op amp? (a) $R_{in} = 0$ and $R_{out} = 0$ (b) $R_{in} = \infty$ and $R_{out} = \infty$ (c) $R_{in} = \infty$ and $R_{out} = 0$ and $R_{out} = \infty$.
- 2. For the amplifier shown in Fig. 1, which one of the following is a correct approach to increase the small-signal voltage gain? (a) decrease W/L of M_1 (b) increase W/L of M_2 (c) decrease I $_{BIAS}$ (d) decrease channel lengths M_1 and M_2 .

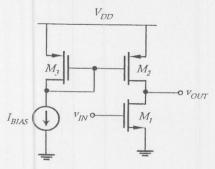
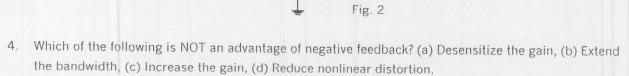



Fig. 1

For the amplifier shown in Fig. 2, which one of the following is NOT true if the value of R_E increases: (a) input resistance increases (b) output resistance increases (c) transconductance increases (d) the negative feedback is enhanced.

- 5. If a Class B power amplifier is at the point of maximum power dissipation, its power conversion efficiency will be (a) 0 % (b) 25 % (c) 50 % (d) 78.5 %.
- 6. If a BJT has $I_C = 1$ mA, $f_T = 400$ MHz, and $C_{\pi} = 10.9$ pF (EB junction capacitance), its C_{μ} (CB junction capacitance) = (a) 2 pF, (b) 3 pF, (c) 4 pF, (d) 5 pF.
- 7. The second-order filter using the op-amp-RC resonator, as shown in Fig. 3, has a function of (a) high-pass, (b) notch at ω_0 , (c) band-pass, (d) all-pass.

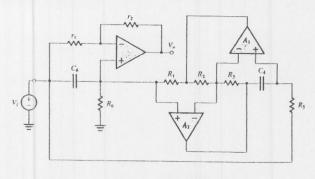


Fig. 3

科目:電子學(甲)

題號: 458

共 4 頁之第 2 頁

8. The equivalent input resistance at point ν of Fig. 4 is (a) R_f , (b) $-R_f$, (c) $2R_f$, (d) $-2R_f$.

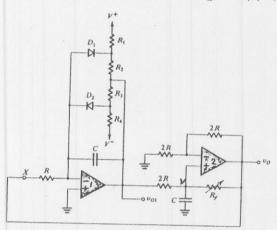


Fig. 4

- 9. The minimum number of transistors to realize the Boolean function of AB+BC+CA in full CMOS logic gate circuits is (a) 6, (b) 10, (c) 18, (d) none of the above.
- 10. Which of the following logic circuit cannot pull the output high level to V_{dd} (the highest voltage supply)? (a) TTL, (b) CMOS, (c) NMOS (depletion load), (d) none of the above.

二、計算、問答題

- 1. (12%) Consider the circuit in Fig. 5, in which $R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10 \text{K}\Omega$, $V_{DD} = 5 \text{V}$ and $V_1 = 3 \text{V}$.
 - (a) (4%) Assume the Op Amps have infinite gain. What are the values of current I₁ and I₂?
 - (b) (8%) Find the current I₁ and I₂ again using Op Amps with a finite gain (A = 10) for the same circuit.

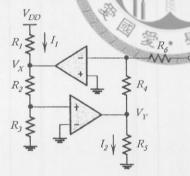
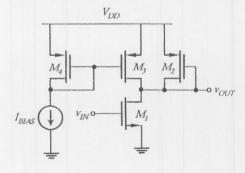
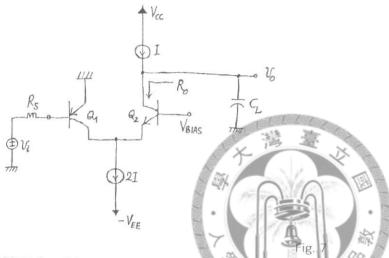


Fig. 5

- 2. (8%) Consider the circuit in Fig. 6. Use the following parameters for calculation: $V_{DD} = 5V$, Input DC bias = 3V, I $_{BIAS} = 300 \,\mu$ A, $\mu_n C_{ox} \, W_1 / L_1 = \mu_p C_{ox} \, W_2 / L_2 = \mu_p C_{ox} \, W_3 / L_3 = \mu_p C_{ox} \, W_4 / L_4 = 200 \,\mu$ A/V², $V_{TN} = 1V$ and $V_{TP} = -1V$.
 - (a) (4%) What is the output DC voltage of the circuit?
 - (b) (4%) Find the small-signal voltage gain of the amplifier.




Fig. 6

科目:電子學(甲)

題號: 458

共 4 頁之第 3 頁

- 3. (20%) Fig. 7 shows a folded cascode amplifier. The base of Q₂ is fixed at V_{BIAS}. V_A (Early voltage), β , C $_\pi$, and C $_\mu$ of all transistors are identical. In the circuit, R_s = 2.5 k Ω , I= 1 mA, V_T = 25 mV (thermal voltage), V_A = 50 V, β = 50, C $_\pi$ = 12 pF, and C $_\mu$ =2 pF.
 - (a) (10%) Assume the output resistances of the two current sources are infinity. Find the output resistance R_o and the mid-band voltage gain v_o/v_i of this amplifier.
 - (b) (5%) The common emitter stage of the amplifier uses a PNP BJT, i.e., Q_1 . Calculate the pole frequency (in Hz) at the input side of Q_1 .
 - (c) (5%) The total capacitance at the output node is $C_L = 20$ pF. Find the pole frequency (in Hz) at the output node.

- 4. (20%) Consider the circuit in Fig. 8.
 - (a) (4%) The output resistance R_{o2C} looking into the drain of Q_{2C} can be expressed as a function of $f(g_{m2}, r_{o2C}, r_{o2})$. Write down the explicit form of R_{o2C} and the output resistance R_o of the first stage of CMOS Op Amp.
 - (b) (16%) Let $2I = 25 \,\mu$ A; $\mu_n C_{ox} = 20 \,\mu$ A/V²; $\mu_p C_{ox} = 10 \,\mu$ A/V²; $|V_t| = 1$ V; $|V_A| = 25$ V; W/L for Q_1 , Q_{1C} , Q_2 , and $Q_{2C} = 120/8$; W/L for Q_{3C} and $Q_{4C} = 60/8$; W/L for Q_3 and $Q_4 = 8/8$. Calculate numerical values of the output resistance and voltage gain of the first stage.

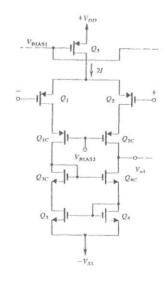
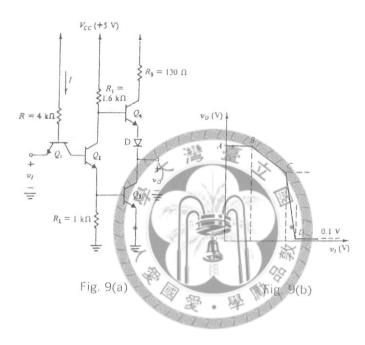


Fig. 8


國立台灣大學九十二學年度碩士班招生考試試題

科目:電子學(甲)

題號: 4

共 4 頁之第 4 頁

- 5. (20%) In the standard TTL inverter shown in Fig. 9(a), the voltage transfer characteristic curve looks like the one shown in Fig. 9(b).
 - (a) (8%) analyze the operation modes of transistors Q1, Q2, Q3, Q4 and voltages at their collectors when input voltage $V_r = 5V$.
 - (b) (3%) explain the function of the diode D at the output stage.
 - (c) (6%) estimate the coordinates (V_1 , V_0)of points B and C and the slope of the BC segment in Fig. 9(b).
 - (d) (3%) explain how the BC transition region in Fig. 9(b) can be removed by replacing the $1~\rm k\Omega$ resistor with an "active pull-down" circuit.

