(1) (10%) Let a, b, c be positive integers, (a, b, c) be the great common divisor of a, b, c and [a, b, c] the least common multiple of a, b, c. Show that

$$(a, b, c)[a, b, c] = abc$$

- (2) (10%) Find all integers that satisfy the following congruences simultaneously: $x \equiv 1 \pmod{2}$, $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$.
- (3) (10%) Let V be the \mathbb{R} -vector space of all real valued functions defined on \mathbb{R} If for each real number α the function g_{α} is defined by $g_{\alpha}(x) = \cos(x+\alpha)$ for all $x \in \mathbb{R}$, what is the dimension of the subspace of V generated by $\{g_{\alpha} : \alpha \in \mathbb{R}\}$?
- (4) (20%) Let A and B be square matrices over a field F. We say that A is similar to B if there exists an invertible matrix P over F such that $B = P^{-1}AP$. We say that A is equivalent to B if there exist an invertible matrix P over F and an invertible matrix Q over F such that $B = Q^{-1}AP$.
- (a) Show that if A and B are similar, then A^m and B^m are similar for all positive integers m.
- (b) If A and B are equivalent, is A^m equivalent to B^m ? Prove your answer.
- (5) (20%) Let G be a group and H, K be subgroups of G.

(a) Give an example to show that HK need not be a subgroup of G.

- (b) Let K be a normal subgroup of G. Show that HK is a subgroup of G.
- (6) (20%) Let R be a ring with identity and I, J be two-sided ideals of R.
 - (a) Give an example to show that $IJ = I \cap J$ need not to be true.
 - (b) Suppose that I + J = R. Show that $IJ = I \cap J$.
- (7) (10%) Let F be a field whose characteristic is not 2, and let a and b be elements of F such that $x^2 a$ and $x^2 b$ are irreducible over F. If K is a splitting field of $f = (x^2 a)(x^2 b)$ over F, show that [K : F] is 2 or 4 according as $x^2 ab$ is reducible or irreducible over F.