國立台灣大學九十三學年度碩士班招生考試試題

科目:數值分析

共 / 頁之第 全 頁

- 1. This problem is about Newton's method for solving nonlinear equation f(x) = 0, where f is a smooth function. Answer the following questions.
 - (a) (5%) What is Newton's method?
 - (b) (5%) Write a pseudo-code for Newton's method (no longer than 20 lines).
 - (c) (5%) Show that Newton's method converges quadratically if the starting value is closed to the root.
 - (d) (5%) Give an example to demonstrate that Newton's method may diverge.
- 2. For $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, we define vector norms $||x||_p = (\sum_i |x_i|^p)^{1/p}$ and $||x||_{\infty} = \max_i |x_i|$. For a matrix $A = (a_{ij})_{n \times n}$, we define the operator norm

$$||A||_p := \sup_{||x||_p = 1} ||Ax||_p.$$

- (a) (5 %) Show that $||A||_1 = \max_j \sum_i |a_{ij}|$.
- (b) (5 %) Show that $||A||_{\infty} = \max_{i} \sum_{j} |a_{ij}|$
- (c) (5 %) Show that $||A||_2 = \max_i |\lambda_i(A)|$, where $\lambda_i(A)$ are the eigenvalues of A
- (d) (5 %) Define the condition number of A by $\kappa_p(A) = ||A||_p ||A^{-1}||_p$. Find the condition numbers $\kappa_p(A)$, $p = 1, 2, \infty$ for the matrix

$$A = \begin{pmatrix} 1 & 1 + \epsilon \\ 1 - \epsilon & 1 \end{pmatrix}$$

where ϵ is a small number.

3. (10%) Derive and prove the following Simpson rule for numerical integration:

$$\int_{-h}^{h} f(x) dx = \frac{h}{3} (f(-h) + 4f(0) + f(h)) + O(h^{5}).$$

- 4. (10%) Let h be a small mesh size. Let us abbreviate f(ih) by f_i . Suppose we are given f_i , i = -1, 0, 1, 2. Use them to find best approximations for $f'(\alpha h)$ and $f''(\alpha h)$, where $0 < \alpha < 1$. Find the corresponding approximation errors and prove your statement.
- 5. We call a matrix $A = (a_{ij})_{n \times n}$ diagonally dominant if for each $1 \le i \le n$, $|a_{ii}| > \sum_{j \ne i} |a_{ij}|$.
 - (a) (5%) What is the Jacobi method for solving the linear equation Ax = b?
 - (b) (5%) Write a pseudo-code for the Jacobi method.
 - (c) (10%) If A is diagonally dominant, show that the Jacobi method converges.
 - (d) (10%) Write anything you know about the Jacobi method, for instance, the error reduction rate, the Jacobi method for Poisson equation, etc.
- 6. (10%) Write a second-order Runge-Kutta method for solving the ODE $\dot{x} = f(t, x)$. Prove your statement.

試題隨卷繳回