國立台灣大學九十三學年度碩士班招生考試試題

科目:機率統計

題號: 61

共 | 頁之第 全 頁

- 1. Let T be a random variable with a Student's t distribution with p degrees of freedom.
- (1a) (10%) Show that $T \stackrel{d}{\to} Z$, as $p \to \infty$, where Z is a standard normal random variable.
- (1b) (10%) Show that $U = T^2/(p+T^2)$ has a beta distribution with parameters 1/2 and p/2.
- 2. Let X_1 and X_2 be independent random variables from N(0,1), and $W=X_1/X_2$.
- (2a) (5%)(5%) Show that the expectation of W does not exist, and find the median of W.
- (2b) (10%) Let $Y_1 = a_1X_1 + a_2X_2 + a_3$ and $Y_2 = b_1X_1 + b_2X_2 + b_3$. Find a set of coefficients $(a_1, a_2, a_3, b_1, b_2, b_3)$ such that (Y_1, Y_2) follows a bivariate normal with $E[Y_1] = 1$, $E[Y_2] = 2$, $Var[Y_1] = 1$, $Var[Y_1] = 4$, and $Cov(Y_1, Y_2) = 1$.
- 3. Let X_1, \dots, X_n be a random sample from a population with the probability density function $f(x|\theta) = \exp(-(x-\theta))1_{(x>\theta)}$.
- (3a) (8%) Show that $X_{(1)} = \min\{X_1, \dots, X_n\}$ is a complete sufficient statistic.
- (3b) (7%) Show that $X_{(1)}$ is independent of the sample variance $S^2 = \sum_{i=1}^n (X_i \bar{X})^2/(n-1)$ with $\bar{X} = \sum_{i=1}^n X_i/n$.
- 4. Let X_1, \dots, X_n be a random sample from a population with probability density function $f(x|\lambda) = (1/\lambda) \exp(-x/\lambda) 1_{(0,\infty)}(x)$. Moreover, X_1, \dots, X_m are observed but all we know about X_{m+1}, \dots, X_n is that they exceed τ .
- (4a) (7%) Write down the likelihood function for λ .
- (4b) (8%) Show that the maximum likelihood estimator of λ is $\hat{\lambda} = (\sum_{i=1}^{m} X_i + (n-m)\tau)/m$.
- 5. (10%) Conditioning on P=p, X_1 and X_2 are assumed to be independent and identically distributed Bernoulli(p) random variables. Moreover, let P has a probability density function $f_P(p|\alpha,\beta)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}p^{\alpha-1}(1-p)^{\beta-1}1_{(0,1)}(p)$, where $\alpha>0$ and $\beta>0$. Find α and β such that $E[X_1]=1/4$ and $Corr(X_1,X_2)=1/2$.
- 6. (10%) (10%) Let X_1, \dots, X_n be a random sample from a population with probability density function

$$f_X(x|\theta) = \frac{1}{(2\pi)^{1/2}\theta x} \exp(\frac{-1}{2}(\frac{\ln(x)}{\theta})^2) 1_{(x>0)},$$

where $\theta > 0$, let $T = \sum_{i=1}^{n} (\ln(X_i))^2$.

- (6a) (10%) Show that $P(T>t|\theta_2)\geq P(T>t|\theta_1)$ for all $\theta_2>\theta_1$ and any constant value t.
- (6b) (10%) Show that there is a uniformly most powerful (UMP) test of the null hypothesis H_0 : $\theta \leq \theta_0$ versus the alternative hypothesis $H_1: \theta > \theta_0$, and find the rejection region of such test.