國立台灣大學九十三學年度碩士班招生考試試題 科目:無機化學-甲 ,頁之第 頁 選擇題∶每題五選項,每一選項獨立作答。若選項爲正確,用「○」表示。若選項爲不正確,用「╳」 表示。例如:每題 (a) \bigcirc (b) imes (c) \bigcirc (d) imes (e) imes 。答對的選項得一分,答錯的選項扣一分, 不作答則不計算分數。每題最高可得五分,最低零分。 (1) Which of the following complexes obeys the 18-electron rule (EAN)? (a) $[Ni(NH_3)_6]^{2+}$ (b) $Ni(CO)_4$ (c) $[CoCl_4]^{2-}$ (d) $Fe(CO)_5$ (e) $Ni(CN)_4^{2-}$ (2) Which of the following complexes shows a tetrahedral geometry? (a) SiH_4 (b) $Ni(CO)_4$ (c) $[CoCl_4]^2$ (d) SF_4 (e) $Ni(CN)_4^{2-}$ (3) Which of the following complexes is paramagnetic? (a) $[Ni(NH_3)_6]^{2+}$ (b) $Ni(CO)_4$ (c) $[CoCl_4]^{2-}$ (d) $Fe(CO)_5$ (e) $Ni(CN)_4^{2-}$ (4) Which of the following is a high spin complex? (a) $[Ru(NH_3)_6]^{3+}$ (b) $Fe(CN)_6^{4-}$ (c) $Fe(H_2O)_6^{3+}$ (d) $[FeCl_4]^{-}$ (e) $Co(NH_3)_6^{3+}$ (a) d^7 low spin (5) Which of the following octahedral complexes has ${}^{2}E$ ground state? (b) d⁵ low spin (c) d¹ (d) d⁴ high spin (e) d⁹ - (6) Which of the following statements describes a typical character for the dissociative mechanism of ligand substitution reactions? - (a) In a dissociative (D) substitution reaction, loss of a ligand to form an intermediate with a lower coordination number is followed by addition of a new ligand to the intermediate. - (b) The reaction rate should be strongly dependent on the leaving ligand properties. - (c) The rate of reaction changes only slightly with changes in the incoming ligand. - (d) Steric crowding on the reactant complex increases the rate of leaving ligand dissociation. - (e) Decreasing negative charge or increasing positive charge on the reactant complex usually decreases the rates of substitution. - (7) Two metal carbenes C and D are shown on the right diagram. Which of the following descriptions about these metal carbenes is incorrect? - (a) They are called Fischer carbenes. - (b) In carbene C, the W=C bond length is shorter than W-C σ - (c) Nucleophile tends to undergo attack at the W=C carbon atom of complex C. - oc W Ta - (d) Electrophile tends to undergo attack at the Ta=C carbon atom of complex D. - (e) Reaction of C with PhLi would give (CO)5W=C(Ph)2 as the major product. - (8) Right diagram shows a mechanistic scheme for the Monsanto Process. Four steps labeled respectively as M, N, O, and P are involved. Which step of the reactions is defined as reductive elimination? (a) M (c) O (e) none $$\begin{array}{c|c} & & & & \\ \hline \\ \text{(O)} & & & \\ \hline \\ \text{(O)} & & \\ \hline \\ \text{(O)} & & \\ \hline \\ \text{(O)} & & \\ \hline \\ \text{(I)} & & \\ \hline \\ \text{(N)} \hline$$ 接背面 題號: 76 共与 頁之第二 頁 #### 問答題 1. (a) Assign the fac isomer of M(CO)₃L₃ to the proper point group. (1 pts) (b) Derive the representation for -CO stretching modes (Γ_{stretch}) of the fac isomer of M(CO)₃L₃. Determine the number and symmetry of -CO stretching modes of the fac isomer of M(CO)₃L₃. Which mode is IR active? (4 points) II. (a) How many allowed absorption bands would be observed for a d⁶ octahedral high spin complex with the Tango-Sugano diagram shown on the right? (1 pts) (b) Which states are involved in the electronic transition. (1 pts) III. (a) Predict the pKa value for HClO₄ according to Pauling's rule. (1 point) (b) It has been reported that the pK_1 of H_3PO_3 is 2.00 and the pK_1 of H_3AsO_3 is 9.2. Predict the Lewis structures of H_3PO_3 and H_3AsO_3 based on their acidity. (2 points) ## 共 5 頁之第 子 頁 #### IV. - (a) Explain briefly the observation that the energy difference between the states of 1s²2s¹ and 1s²2p¹ for Li is 14,904 cm⁻¹, whereas for Li²⁺ the energy difference between the states of 2s¹ and 2p¹ is only 2.4 cm⁻¹. (4%) - (b) What are the corresponding spectroscopic notations for these 4 electron configurations? (4%) #### V. Give the symmetry lables for the 3d-, 4s- and 4p-orbitals of the central metal atoms in (a) $[Cr(en)F_4]^-$, and (b) $[Co(en)_3]^{3+}$. (where "en" is "ethylenediamine") (8%) #### VI. For a cubic crystal. - (a) Show the (12 7), (131), and (010) crystal faces. (6%) - (b) What is the angle between (021) and (001) faces? (2%) #### VII. - (a) Show the Lewis structure of NO₃ ion. (2%) - (b) Construct the π -molecular orbitals and the corresponding energy level diagram by using "symmetry-adapted linear combination of atomic orbitals". (10%) - (c) FNO₂ is iso-electronic with NO₃. What will be the π -MOs and energy levels of FNO₂? (4%) #### VIII. | 2010 | Select the best answer and give the basis for your selection. (10%) | | | | | | | | | |------|---|-------------------|-------------------|-------------------|--|--|--|--|--| | (a) | Most acidic in aqueous solution | HCIO JOIN | HClO ₂ | HClO ₃ | | | | | | | (b) | Most basic toward BMe ₃ | Py (pyridine) | 2-MePy | 4-MePy | | | | | | | (c) | Most basic in aqueous solution | $NH_2(CH_3)$ | $NH(CH_3)_2$ | $N(CH_3)_3$ | | | | | | | (d) | Most acidic toward NH ₃ | BF_3 | BCl ₃ | BBr_3 | | | | | | | (e) | Strongest oxidizing agent | KMnO ₄ | KTcO ₄ | KReO ₄ | | | | | | | D ₂₈] | $E C_2(z) C_2(y) C_2(x) i \sigma(xy) \sigma(xz) \sigma(yz)$ | | |---|---|--| | A ₀ B ₁ B ₂ B ₃ A ₁ B ₁ B ₃ A ₁ B ₁ B ₃ | | x ² , y ² , z ²
xy
xz
yz | | D3. | $E 2C_3 3C_2 \sigma_b 2S_3 3\sigma_{\psi}$ | | | A1',
A2',
E',
A2'',
E'' | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | D ₂₄ | E 25. C2 2C2' 204 | • | | A ₁ A ₂ B ₁ B ₂ E | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | D 34 | E 2C, 3C, 1 2S, 300 | | | A 10
A 20
E 0 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | A 10
A 20
Eu | $ \begin{vmatrix} 1 & 1 & 1 & -1 & -1 & -1 \\ 1 & 1 & -1 & -$ | | | T _d | $E 8C_3 3C_2 6S_4 6\sigma_d$ | _ | | $\begin{bmatrix} A_1 \\ A_2 \\ E \\ T_1 \\ T_2 \end{bmatrix}$ | $ \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 & -1 \\ 2 & -1 & 2 & 0 & 0 \\ 3 & 0 & -1 & 1 & -1 \\ 3 & 0 & -1 & -1 & 1 & (x, y, z) \end{vmatrix} \begin{vmatrix} x^2 + y^2 + z^2 \\ (2z^2 - x^2 - y^2, x^2 - y^2) \\ (xy, xz, yz) \end{vmatrix} $ | | | 0, | $E \ 8C_3 \ 6C_2 \ 6C_4 \ 3C_2(=C_1^2) \ i \ 6S_4 \ 8S_6 \ 3\sigma_h \ 6\sigma_{ii}$ | | | A _{1g}
A _{2g} | 1 | $x^2 + y^2 + z^2$ | | E_{κ} $T_{1\sigma}$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $(2z^2-x^2-y^2, x^2-y^2)$ | | T _{2R} | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $x^{2} + y^{2} + z^{2}$ $(2z^{2} - x^{2} - y^{2}, x^{2} - y^{2})$ (xz, yz, xy) | | L | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | Tiu | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 科目:無機化學-甲 題號: 76 # 共 5 頁之第 5 頁 ### **Character Tables** | ~ 1 | | ~ x | | | | | |--------|--------------|--------------|---------------|-------------------------------|----------------------|---| | A
B | 1 | -1 | z, R
x, y, | R., R, | x², y²,
yz, xz | z ¹ , xy | | | | | C32 | | | $\epsilon = \exp(2\pi i/3)$ | | A
E |
 1
 1 | Ι
ε
ε* | (*) | z, R _z
(x, y)(R | (., R _y) | $x^{2} + y^{2}, z^{2}$
$(x^{2} - y^{3}, xy)(yz, xz)$ | | D ₂ | E | $C_2(z)$ | $C_2(y)$ | $C_2(x)$ | | 1 | |--|-------|---------------|--------------------|---------------|-------------------------|--| | A B ₁ B ₂ B ₃ | 1 1 1 | 1
-1
-1 | 1
-1
1
-1 | 1
-1
-1 | z, R,
y, R,
x, R, | x ² , y ² , z ²
xy
xz
yz | | C21 | E | C ₁ | $\sigma_{\rm r}(xz)$ | $\sigma'_v(yz)$ | - 1 | | |---|---|----------------|----------------------|-------------------|---|---| | A ₁ A ₂ B ₁ B ₂ | 1 |

 | !
-!
!
-! | - 1
- 1
- 1 | z
R _z
x, R _r
y, R _x | x ² , y ² , z ² xy xz yz | | C30 | E | 2C, | 3σ _r | | | |---|-------|--------------------|-----------------|--|--| | A ₁ A ₂ E | 1 | 1 | -1 | z
R _s | x^2+y^2,z^2 | | C _{2h} | E | C_2 i | 0
• | $(x, y)(R_x, R$ | $(x^2-y^2,xy)(xz,yz)$ | | A _e B _e A _u B _u | 1 1 1 |
 -
 - - | - I
- I | R _x
R _x , R _y
z
x, y | $\begin{array}{c} x^2, y^2, z^2, xy \\ xz, yz \end{array}$ | | C 3h | E C 3 | C32 | o _B | S ₃ | 23 4 | } | $\epsilon = \exp\left(2\pi i/3\right)$ | |------|-------|-----------|----------------|----------------|-----------|----------------|--| | A' | 1 1 | 1 | ! | 1 | 1 | R _z | $x^2 + y^2, z^2$ | | E' | ٠ | ε* .
ε | 1 | E* | e*
e | (x, y) | (x^2-y^2,xy) | | A" | 1 1 | 1 | -1 | 1 | -1 | z | | | E" | 11 20 | ε | - i | - t. | - e | (R_x, R_y) | (xz, yz) | # 試題隨卷繳回