材料力學

- 1. An aluminum wire having diameter d = 2 mm and modulus of elasticity E = 75 GPa is subjected to a tensile load P.
 - (a) If the wire stretches 2.25 mm when the tensile force is 175 N, What is the length L of the wire? (10%)
 - (b) If the maximum permissible elongation is 3.0 mm, the allowable stress in tension is 60 MPa, and the length of the wire is 3.8 m, what is the allowable load P_{max} ? (10%)

- 2. A circular tube of aluminum is subjected to torsion by torques T applied at the ends. The bar is 0.5 m long, and the inside and outside diameters are 30 mm and 40 mm, respectively. It is determined by measurement that the angle of twist is 3.57° when the torque is 600 N·m. Calculate
 - (a) the maximum shear stress τ_{max} in the tube, (10%)
 - (b) the shear modulus of elasticity G, and (10%)
 - (c) the maximum shear strain γ_{max} . (10%)

3. A small dam of height h = 2.4 m is constructed of vertical wood beams AB of thickness t = 160 mm. Consider the beams to be simply supported at the top and bottom. Determine the maximum bending stress σ_{max} in the beams, assuming that the weight density of water is $\gamma = 9.81$ kN/m³. (15%)

國立台灣大學九十三學年度碩士班招生考試試題

科目:材料力學(F)

題號:265

共 2. 頁之第 2. 頁

- 4. An element in plane stress is subjected to stresses $\sigma_x = 12,300$ psi, $\sigma_y = -4,200$ psi, and $\tau_{xy} = -4,700$ psi. (Consider only the in-plane stresses)
 - (a) Determine the principal stresses and show them on a sketch of a properly oriented element. (10%)
 - (b) Determine the maximum shear stresses and show them on a sketch of a properly oriented element. (10%)

5. A generator shaft of hollow cross section is subjected to a torque T=25 kN·m. The outer and inner diameters of the shaft are 200 mm and 160 mm, respectively. What is the maximum permissible compressive load P that can be applied to the shaft if the allowable in-plane shear stress is $\tau_{\text{allow}} = 45$ MPa? (15%)

