題號: 279

共 / 頁之第 | 今 頁

- 1. Please explain the second law of thermodynamics in detail. (10%)
- 2. Please explain the ideal solution in detail. (10%)
- 3. Please explain the Henry's law in detail. (10%)
- 4. Please explain the Nernst distribution law in detail. (10%)
- 5. Please explain the osmotic pressure in detail. (10%)
- 6. Use the first law of thermodynamics and other relevant definitions to derive the following expression for c_V

$$c_{V} = -\left(\frac{\partial E}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{E} \tag{15\%}$$

where E is the internal energy.

7. For any gas that obeys van der Waals equation of state, show that

$$\left(\frac{\partial E}{\partial V}\right)_T = \frac{a}{V^2} \tag{20\%}$$

where E is the internal energy.

(Hint: The van der Waals equation of state is $\left(p + \frac{a}{V^2}\right)(V - b) = RT$)

8. The activity coefficient γ_2 (on the mole fraction scale) of the solute in a certain dilute solution is given by $\gamma_2 = e^{Ax_2^2}$, where A is a constant at constant temperature. Obtain an expression in terms of A and x_2 for the activity coefficient γ_1 (on the mole fraction scale) of the solvent in this solution.

(15%)