題號:405

共 一 頁之第 全 頁

注意:請於答案卷上依序作答,並標明大題及其題號

A. (8 points for each of the following 9 blanks.)

- $\lim_{x\to 0} \frac{\sin(2x)-2x}{x^3} = (1)$.
- When $[f(x)]^2 = 36 + \int_0^x \{ [f(t)]^2 + [f'(t)]^2 \} dt$, it can be shown that f(x) = af'(x). Then a = (2).
- The highest and lowest points on the curve $x^2 + xy + y^2 = 12$ are (3).
- The radius of convergence of the series $\sum_{i=1}^{\infty} \frac{(nx)^n}{n!}$ is __(5)__
- $\int_0^1 \int_y^1 e^{\max\{x^2, y^2\}} dx dy = \underline{(6)}$ where $\max\{x^2, y^2\}$ means the larger of the numbers x^2 and y^2 .
- It is known that $u = \sin(x-2t) + \ln(x+2t)$ is a solution of the equation $\frac{\partial^2 u}{\partial t^2} = c\frac{\partial^2 u}{\partial x^2}$. Then $c = \underline{(7)}$.
- The total production P of a certain product depends on the amount L of labor used and the amount K of capital investment. When $P = cL^{\alpha}K^{1-\alpha}$, the maximum production occurs at $mL = \alpha p$ and nK = (8) p if mL + nK = p.
- Define $I(r) = \iint_D \frac{1}{x^2 + y^2} dA$ where D is the region bounded by the circles with center the origin and radius R and 1, 0 < R < 1. $\lim_{R \to 0} I(R) = \underline{(9)}$.
- B. (14 points)
- Find the maximum and minimum of $f(x, y) = 2x^3 + y^4$ over the region defined by $D = \{(x, y) : x^2 + y^2 \le 1\}$.
- C. (14 points)
- Consider the function

$$f(x, y, z) = \begin{cases} \frac{(x+y+2z)^{\alpha}}{x^2+y^2+z^2} & \text{if } (x, y, z) \neq (0,0,0) \\ 0 & \text{if } (x, y, z) = (0,0,0) \end{cases}$$

Prove that f(x, y, z) is continuous at (0,0,0) when $\alpha > 2$ and explain why f(x, y, z) is not continuous at (0,0,0) when $\alpha = 2$.

試題隨卷繳回