國立台灣大學九十三學年度碩士班招生考試試題

科目:線性代數(B)

題號:448

共 / 頁之第 全 頁

- 1. (30%) Determine if the following statements are true or false (1 % each) and provide a short proof if it is true or any explanation/counterexample if it is false (2 % each).
 - (a) If the only solution to Ax = 0 is x = 0, then the rows of A are linearly independently.
 - (b) If A and B are matrices such that $AB = I_n$ for some n, then both A and B are invertible.
 - (c) If $T: \mathbb{R}^3 \to \mathbb{R}^2$ is linear, then its standard matrix has size 3×2 .
 - (d) For any square matrix A, $\det A^T = -\det A$.
 - (e) The dimension of the null space of a matrix equals the rank of the matrix.
 - (f) If T is a linear operator on R^n , B is a basis for R^n , C is the matrix whose columns are the vectors in B, and A is the standard matrix of T, then $[T]_n = CAC^{-1}$.
 - (g) If an $n \times n$ matrix has n distinct eigenvectors, then it is diagonalizable.
 - (h) If P is an $n \times n$ matrix such that $\det P = \pm 1$, then P is an orthogonal matrix.
 - (i) In any vector space, $a\mathbf{v} = \mathbf{0}$, where $a \in R$, $\mathbf{v} \in R^n$, implies that $\mathbf{v} = \mathbf{0}$.
 - (j) A matrix representation of a linear operator on $M_{m \times n}$, the set of all $m \times n$ matrices, is an $m \times n$ matrix.
- 2. (20%) Given a matrix **A** and a vector **b** as follows: $\mathbf{A} = \begin{bmatrix} 1 & -1 & -2 & -8 \\ -2 & 1 & 2 & 9 \\ 3 & 0 & 2 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} -3 \\ 5 \\ -8 \end{bmatrix}$.
 - (a) Please find an LU decomposition of A; (10%)
 - (b) Please solve Ax = b, where x is a 4×1 vector. (10%)
- 3. (30%) Let T and U be the linear operators on R^3 defined by:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} -x_1 + 2x_3 \\ x_1 + x_2 \\ -x_2 + x_3 \end{bmatrix}, \quad \text{and} \quad U\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} -2x_1 + 5x_2 - x_3 \\ -3x_1 + 6x_2 - x_3 \\ -x_1 + x_2 + 2x_3 \end{bmatrix},$$

and let
$$B = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$$
, where $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{b}_3 = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$.

- (a) Find the standard matrices of T and U. (5%)
- (b) Find $[T]_B$, $[U]_B$ and $[UT]_B$, i.e., the matrix representations of T, U and UT with respect to B, respectively. (15%)
- (c) Determine a relationship among $[T]_B$, $[U]_B$ and $[UT]_B$. (10%)
- 4. (20%) Given a matrix **A** and a set of matrices S as follows:

$$\mathbf{A} = \begin{bmatrix} 5 & 3 \\ 1 & -2 \end{bmatrix}, \quad S = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}.$$

- (a) Determine if S is a linearly independent subset of $M_{2\times 2}$, the vector space of all 2×2 matrices; (10%)
- (b) Represent the matrix A as a linear combination of the vectors in the set S. What are the corresponding coefficients? (10%)

試題隨卷繳回