- 1. (20%) Label the following statements as being true or false. (No explanation is needed. Each correct answer gets 2% and each wrong answer gets 0%):
 - (a) If an $n \times n$ matrix is not invertible, then it has an eigenvector in \mathbb{R}^n .
 - (b) We can always define infinitely many inner products for an inner product space.
 - (c) Let $A \in \mathbb{R}^{m \times n}$ and R be its reduced row echelon form. Then the span of column of R is equal to the span of columns of A.
 - (d) If two $n \times n$ matrices have the same characteristic polynomial, then they are similar.
 - (e) If S is a linearly independent subset such that every vector in V can be written as a linear combination of the vectors in S. Then S is a basis for V.
 - (f) Let A be an $n \times n$ matrix and $||A\mathbf{v}|| = ||\mathbf{v}||$ for every \mathbf{v} in \mathbb{R}^n . Then A is orthogonal.
 - (g) Every matrix in $\mathcal{M}_{5\times 5}(\mathcal{R})$ has an eigenvector in \mathcal{R}^5 .
 - (h) Given any A in $\mathcal{M}_{m \times n}(\mathcal{R})$, AA^T is always diagonalizable.
 - (i) Let A and B be $n \times n$ matrices. Suppose that B is not invertible. Then rank $AB < \operatorname{rank} A$..
 - (j) Let $\{v_1, v_2, v_3, v_4\}$ be a linearly independent subset of \mathcal{R}^5 and let $T: \mathcal{R}^5 \to \mathcal{R}^4$ be linear. Then $\{T(v_1), T(v_2), T(v_3), T(v_4)\}$ cannot be a linearly independent subset of \mathcal{R}^4 .
- 2. Let $V = \mathcal{M}_{2\times 2}(\mathcal{R})$ be an inner product space with $\langle A, B \rangle = \operatorname{trace}(AB^T)$.
 - (a) (6%) Let W be the subspace of V containing all symmetric 2×2 matrices. Find an orthonormal basis for W.
 - (b) (4%) Find a basis for W^{\perp} .
 - (c) (5%) Find the matrix in W that is closest to $C = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$
- 3. Find the reduced row echelon form of A, B and C defined below.
 - (a) (5%) A is a 5 \times 4 matrix whose columns are linearly independent.
 - (b) (5%) $B = \mathbf{u}\mathbf{v}^T$, where u is a nonzero vectors of \mathbb{R}^n and $\mathbf{v}^T = [1 \ 2 \ 3 \ \dots \ n]$.
 - (c) (5%) $C = R^T$ where R is the reduced row echelon form of a 4×5 matrix with rank = 3.
- 4. Let X and Y be two independent random variable and both are uniformly distributed over
- [-1, 1]. Please determine the following statement as being true or false. Derivation is required.
- (a) Let A = X + Y and B = X Y, then the probability density function of A and B are identical. (8%)
- (b) Let Z be a normal random variable with zero mean and variance 1/4. Then under Chebychev's inequality, one can argue that $\Pr\{|Z| \ge 1 + |X|/2\} \le 1/4$. (8%)
- 5. Let X and Y be two independent Poisson random variables with mean equal to λ_1 and λ_2 respectively. Please dervie the formula for E[X | X+Y=z], where z is a non-negative integer. (10%)
- Let X and Y be two independent geometric random variables, both mean equal to q.
 (i)Please find the covariance Cov(X+Y, X-Y) (ii) Please find the joint probability function of X+Y and X-Y. (12%)
- 7. Let X_1, X_2, X_N be a set of independent random variables, where each X_i is a normal random variable with mean equal to μ and variance equal to σ^2 . Please derive the moment generating function of Y., where $Y = X_1 + X_2 + + X_N$ and N is a Poisson random variable with mean λ . (12%)