國立台灣大學九十三學年度碩士班招生考試試題

科目:電子學(甲)

題號: 460

共 3 頁之第 / 頁

一、單選選擇題(20%, 每題 2%, 不倒扣, 答案卷上需按題序答題, 否則不予計分)

- 1. For an amplifier, the input resistance is 100 ohm, the output resistance is 2 ohm, and the load resistance is 5 ohm. If the input voltage of the amplifier is 0.1V, the output voltage of the amplifier is 1V. What is the transconductance gain of the amplifier? (a) 30 dB (b) 6 dB (c) 20 dB (d) 23 dB (e) none of the above.
- 2. By increasing the reverse bias voltage of a pn junction diode (before breakdown), the junction capacitance will (a) increase (b) decrease (c) not change (d) increase first, then decrease (e) decrease first, then increase.
- 3. Which device in the following is most suitable to make a simple and stable voltage reference circuitry? (a) BJT (b) NMOSFET (c) PMOSFET (d) JFET (e) GaAs MESFET.
- Which of the following statements is NOT true? (a) For a stable circuit, poles must locate in the left-hand side of s-plane;
 (b) if the Nyquist Plot encircles the point (-1, 0), the system is stable; (c) a negative feedback system reduces the nonlinearity; (d) a class B output stage provides a maximum power efficiency of π/4.
- 5. Which of the following statements is <u>NOT</u> true? (a) The offset voltage of a bipolar differential pair is typically smaller than that of a CMOS differential pair; (b) a class AB stage eliminates the dead zone by establishing turn-on voltages with small quiescent current; (c) a system oscillates if the poles are on the jw axis or in the right-hand side of s-plane; (d) in a Bode Plot, a zero located in the right-hand side of s-plane increases the magnitude slope by 20 dB/dec and raises the phase by 90°.
- 6. Which of the following statements is <u>NOT</u> true? (a) Cascode configuration achieves a high gain by increasing the output resistance; (b) BiCMOS technology combines bipolar and CMOS devices, providing the advantages of these two technologies; (c) Conventional Op-amp circuits (e.g., the 741 Op-amp) consist of short-circuit protection in the output stage; (d) For a system with real coefficients, its poles and zeros must be real.
- 7. Which one of the following is <u>NOT</u> true for TTL logic? (a) output stage provides active pull-up (b) output stage provides active pull-down (c) input diodes are replaced by BJT (d) all transistors are non-saturated during the operation.
- 8. Compared with simple current mirror, which one of the following is the advantage of using cascode current mirrors? (a) power dissipation (b) output resistance (c) output swing (d) circuit complexity.
- 9. Which one of the following is NOT true for a BJT differential amplifier? (a) the input resistance is infinite (b) the differential transconductance (g_m) increases with the bias current (c) the gain decreases if emitter resistors R_E are added (d) CMRR can be increases by minimize the common-mode gain.
- 10. Which of the following is the condition for a feedback amplifier to be stable: (a) when the phase of the open-loop gain is 180°, its magnitude is <1; (b) when the phase of the closed-loop gain is 180°, its magnitude is <1; (c) when the phase of the loop gain is 180°, its magnitude is <1; (d) when the phase of the closed-loop gain is 180°, its magnitude is >1; (e) none of the above.

二、計算、問答題

- 1. (20%) For a doped Si bar with a pn junction at the center as shown in Fig.1, the dopant concentration is 10^{17} /cm³ at p-type side and 10^{20} /cm³ at n-type side. Please calculate
 - (a) (5%) the built-in voltage of the pn junction.
 - (b) (5%) the ratio of the width of depletion region at the p-side to that at the n-side $(x_p : x_p)$.
 - (c) (4%) the hole and electron concentration at the p-side far from the pn junction.
 - (d) (6%) the resistivity at the n-side far from the pn junction assuming the diffusion constants are $D_p = 12$ cm²/sec and $D_n = 36$ cm²/sec, respectively.

Use the following parameters if necessary for calculation: T = 300K, $n_i = 10^{10}/cm^3$, $k = 8.617 \times 10^{-5}$ eV/K, Ks (Si dielectric constant) = 11.8, $\epsilon_0 = 8.85 \times 10^{-14}$ F/cm, $q = 1.6 \times 10^{-19}$ coul.

科目:電子學(甲)

題號:460

共 3 頁之第 2 頁

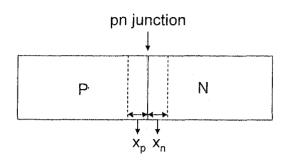


Fig. 1

- 2. (12%) Consider the circuit shown in Fig. 2(a). The circuit is perfectly symmetric and properly biased with common-mode feedback so that all transistors operate at saturation region. The dimensions of NMOS and PMOS transistors are chosen such that $\mu_n C_{ox}(W/L)_n = \mu_p C_{ox}(W/L)_p = 0.1 \text{ A/V}^2$, and the capacitance at nodes P and Q and outputs are lumped as $C_E = 0.1 \text{ pF}$ and $C_L = 0.5 \text{ pF}$. The tail current source I_{SS1} and I_{SS2} are equal to 1 mA and 4 mA, respectively. The output resistance for M_{1-8} is 1 k Ω whereas that of M_{9-12} is 2 k Ω . Neglect other capacitance and body effect.
 - (a) (8%) Calculate the input and output resistance, voltage gain at low frequencies, poles at nodes P (or Q) and output nodes. Depict the frequency response (Bode Plot) and find the phase margin
 - (b) (4%) Now a capacitor C_C is introduced between the output nodes and all the other conditions remain unchanged, as shown in Fig. 2(b). Find the value of C_C that makes the phase margin equal to 45°.

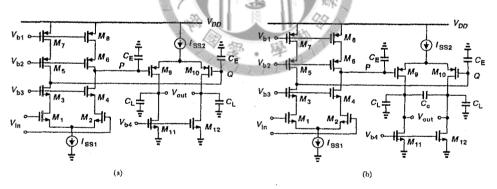


Fig. 2

3. (8%) A transimpedance amplifier is shown in Fig. 3. Assume current sources I₁, I₂, and I₃ are ideal, and the transconductance and output resistance of transistor M₁, M₂, and M₃ are g_{m1}, g_{m2}, g_{m3} and r_{O1}, r_{O2}, r_{O3}, respectively. Determine the closed-loop transimpedance gain (V_{out}/I_{in}) and the input and output impedances. Simplify the expressions for channel-length modulation coefficient λ→0.

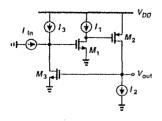
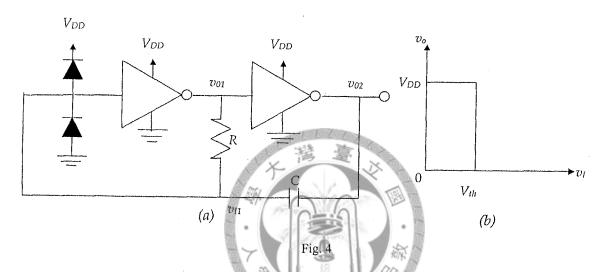


Fig. 3


科目:電子學(甲)

題號:460

共 3 頁之第 3 頁

- 4. (20%) Fig. 4(a) shows the circuit of an astable multivibrator using CMOS inverters. The voltage transfer characteristics of the inverter is also shown in Fig. 4(b). You are given the ideal approximations that: (i) the clamping diodes at the logic gate inputs are ideal and have a turn-on voltage of V_D . (ii) the output resistances of the CMOS inverters are nearly zero
 - (a) (8%) Give the waveform of V_{II}
 - (b) (12%) and show that the period (T) of the output square waves at V_{OI} and V_{O2} is

$$T = CR \times \ln \left(\frac{V_{DD} + V_D}{V_{DD} - V_{th}} \times \frac{V_{DD} + V_D}{V_{th}} \right)$$

- 5. (20%) Fig. 5 shows a differential amplifier circuit with all the transistor W/L values. The device parameters are given as $\mu_n C_{ox} = 20 \, \mu \text{A/V}^2$, $\mu_p C_{ox} = 10 \, \mu \text{A/V}^2$, $V_{in} = 1 \, \text{V}$, $V_{ip} = -1 \, \text{V}$, and the channel length modulation effect can be neglected. (a) (8%) Find I_{DI} , I_{DJ} , V_{DI} , and V_{DS} when the input is biased at 5V.
 - (b) (4%) What is the maximum and minimum input common-mode voltage allowed for this differential amplifier?
 - (c) (8%) What is the small-signal voltage gain A_{vd} (= $\frac{v_{out}}{v_{ln}}$)?

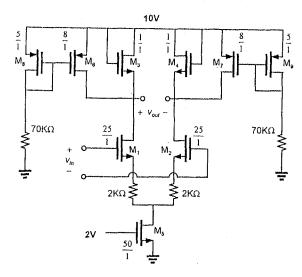


Fig. 5

試題隨卷繳回