1. Consider the logistic equation

$$\dot{y} = ry\left(1 - \frac{y}{K}\right), \ y(0) = y_0$$

where  $r, K, y_0$  are positive constants.

- (a) (10 points) Find its general solutions.
- (b) (10 points) Show that K is an asymptotically stable equilibrium, whereas 0 is a unstable equilibrium.
- 2. Consider the harmonic oscillator with periodic forcing

$$\ddot{x} + \omega_0^2 x = F \cos \omega t$$

where  $\omega, \omega_0, F$  are real constants.

- (a) (10 points) Find general real solutions for this system.
- (b) (10 points) When will the solution  $|x(t)| \to \infty$  as  $t \to \infty$ ?
- 3. If  $y_1$  and  $y_2$  are solutions of y'' + a(x)y' + b(x)y = 0. Define  $W(x) = y_1(x)y_2'(x) y_2(x)y_1'(x)$ .
  - (a) (10 points) Show that W'(x) = -a(x)W(x)
  - (b) (5 points) Show that if  $W(0) \neq 0$ , then  $W(x) \neq 0$  for all  $x \in \mathbb{R}$ .
- 4. (15 points) Find general solutions for the differential equation

$$\begin{aligned}
\dot{x_1} &= x_1 - x_2 \\
\dot{x_2} &= x_1 + 3x_2
\end{aligned}$$

5. Consider the equation

$$\ddot{x} = x - \frac{3}{2}x^2$$

- (a) (10 points) Show that the quantity  $H(x, \dot{x}) := \frac{1}{2}(\dot{x}^2 x^2 + x^3)$  is unchanged along any trajectories.
- (b) (10 points) Plot the phase diagram of this system. Find its equilibria. Determine their stability types.
- (c) (10 points) Find the separatrix curve on the phase plane.