國立台灣大學九十四學年度碩士班招生考試試題

科目: 數值分析

題號: 60

共 頁之第一全 頁

1. (30 points) Let $g: \mathbb{R} \to \mathbb{R}$ be a smooth function having a fixed point x^* .

- (a) What condition determines whether the iteration scheme $x_{k+1} = g(x_k)$ is locally convergent to x^* ?
- (b) What is the convergence rate of the scheme in (a)? Furthermore, what additional condition implies that the convergence rate is quadratic?
- (c) Is Newton's method for finding a zero of a smooth function $f: \mathbb{R} \to \mathbb{R}$ an example of such a fixed-point iteration? If so, what is the function g in this case? If not, then explain why not.
- (d) Kepler's equation in astronomy reads: $x = y \varepsilon \sin y$, with $0 < \varepsilon < 1$. Show that for each $x \in [0, \pi]$ there is a y satisfying the equation. (Hint: Interpret this as a fixed point problem).
- 2. (20 points) Given a set of n data points, (t_i, y_i) , $i = 1, 2, \dots, n$, determining the coefficients x_i of the interpolating polynomial requires the solution of an $n \times n$ system of linear equations Ax = y.
 - (a) If we use the monomial basis $1, t, t^2, \dots$, give an expression for the entries a_{ij} of the matrix A that is efficient to evaluate.
 - (b) Does the condition of A tend to get better, or worse, or stay about the same as n grows?
 - (c) How does this change affect the accuracy with which the interpolating polynomial approximates the given data points?
- 3. (15 points) Suppose that $\phi(f,h)$ is a numerical differentiation rule for the derivative of f'(x) and the error series is

$$E(h) = f'(x) - \phi(f, h) = c_1 h + c_3 h^3 + c_5 h^5 + \cdots$$

Combine $\phi(f,h)$ and $\phi(f,h/2)$ to find a more accurate approximation to $f^{'}(x)$.

4. (15 points) Derive a quadrature rule of the form

$$\int_{1}^{3} f(x) \ dx = Af(1) + Bf(2) + Cf(3),$$

with the property that $E(1) = E(x) = E(x^2) = 0$, where $E(f) = \int_1^3 f(x) \, dx - [Af(1) + Bf(2) + Cf(3)]$. What is the order of accuracy of the formula ?

5. (20 points) Suppose that the symmetric matrix

$$B = \left[\begin{array}{cc} \alpha & a^T \\ a & A \end{array} \right]$$

of order n+1 is positive definite.

- (a) Show that the scalar α must be positive and the $n \times n$ matrix must be positive definite.
- (b) What is the Cholesky factorization of B in terms of α , a, and A?