國立臺灣大學95學年度碩士班招生考試試題

題號: 61 國立 科目:線性代數

題號: 6] 共 頁之第 **至** 頁

Linear Algebra

Instructions: You MUST show your work in order to receive full credit!

1. Let

$$A = \begin{pmatrix} 0 & -3 & 1 & 2 \\ -2 & 1 & -1 & 2 \\ -2 & 1 & -1 & 2 \\ -2 & -3 & 1 & 4 \end{pmatrix}.$$

- (a) (10 points) Find the characteristic polynomial of A.
- (c) (8 points) Find a Jordan canonical form of A.
- (c) (7 points) Find a matrix B that is similar to e^A , where $e^A := \sum_{k=0}^{\infty} \frac{A^k}{k!}$.
- 2. (20 points) Let V be a finite-dimensional inner product space over $\mathbb R$ or $\mathbb C$ and let $T:V\to V$ be a linear map. Suppose that all the eigenvalues of T lie in the field. Prove that V has an orthonormal basis with respect to which T is upper triangular, i.e. a matrix that is zero below the diagonal.
- **3.** Let V be a finite-dimensional vector space and $T:V\to V$ be a linear map. Suppose that $W\subseteq V$ is a T-invariant subspace, i.e. $T(\overline{W})\subseteq W$. Then T induces linear maps $T|_W:W\to W$ and $\overline{T}:V/W\to V/W$.
- (a) (5 points) Suppose that $T:V\to V$ is diagonalizable. Prove that the linear maps $T|_W:W\to W$ and $\overline{T}:V/W\to V/W$ are both diagonalizable.
- (b) (10 points) Suppose that $T|_W:W\to W$ and $\overline{T}:V/W\to V/W$ are diagonalizable. Assume in addition that $T|_W$ and \overline{T} have no common eigenvalues. Prove that T is diagonalizable.
- (c) (5 points) Show by an example that the additional assumption in (b) cannot be removed.
- **4.** (15 points) Let $Mat_{n\times n}(F)$ be the vector space of $n\times n$ matrices over F. Let $A\in Mat_{n\times n}(F)$ and define a linear map $\mathrm{ad}A: Mat_{n\times n}(F)\to Mat_{n\times n}(F)$ by the formula

$$adA(X) := AX - XA, \quad X \in Mat_{n \times n}(F).$$

Suppose that A is diagonalizable with eigenvalues $\lambda_1, \dots, \lambda_n$. Prove that ad A is diagonalizable. What are the eigenvalues of ad A?

- 5. Let V be a finite-dimensional vector space and $T: V \to V$ be a linear map.
- (a) (15 points) Prove that there exists a positive integer k such that $V = \text{Ker}T^k \oplus \text{Im}T^k$.
- (b) (5 points) Show by an example that (a) is not true for infinite-dimensional vector spaces.