國立臺灣大學95學年度碩士班招生考試試題

科目:機率統計

題號: 62

共 / 頁之第 全 頁

1. Suppose (X,Y) has joint probability density function

$$f(x,y) = \frac{1}{\sqrt{2\pi}\sigma} e^{-x^2/2\sigma^2 + x - y} I_{(x \le y)},$$

where $\sigma > 0$ and $I_{(x \leq y)}$ equals 1 if $x \leq y$ and 0 otherwise.

- (a) (10 pts) Find the mean and variance of Y.
- (b) (10 pts) Find $g_0(X)$ and $Var\{g_0(X)\}$ where g_0 minimizes $E\{Y g(X)\}^2$ among all measurable functions g.
- (c) (6 pts) Suppose $\{(X_1,Y_1),\cdots,(X_n,Y_n)\}$ is a random sample from f(x,y) given above. Derive the level- α likelihood ratio test for $H_0: \sigma = \sigma_0$ versus $H_1: \sigma \neq \sigma_0$, where $\sigma_0 > 0$ is a given constant.
- 2. Suppose X is uniformly distributed on $\{-1,1\}$ and Z has probability density function $f_Z(z) = \sigma^{-1} \exp(-z/\sigma) I_{(z \ge 0)}$, where $\sigma > 0$ and $I_{(z \ge 0)}$ equals 1 if $z \ge 0$ and 0 otherwise. For an odd n, let Y_1, \dots, Y_n be a random sample on $Y = XZ + \mu$, where $-\infty < \mu < \infty$.
 - (a) (5 pts) Find the method of moments estimator of μ .
 - (b) (10 pts) Find the maximum likelihood estimators of μ and σ .
 - (c) (10 pts) Derive the asymptotic distributions of the estimators of μ in (a) and (b) and compare them.
 - (d) (5 pts) Derive the asymptotic distribution of the estimator of σ in (b).
 - (e) (8 pts) Derive an approximately level- α test for $H_0: \mu \leq 0$ versus $H_1: \mu > 0$.
 - (f) (8 pts) Derive an approximately level- (1α) confidence interval for μ .
- 3. Let X_1, \dots, X_n be a random sample from a Poisson(λ) distribution with mean λ .
 - (a) (14 pts) Find a conjugate prior distribution for λ and the corresponding Bayes estimator of λ under square loss.
 - (b) (8 pts) Derive the level- α uniformly most powerful test for $H_0: \lambda \geq \lambda_0$ versus $H_1: \lambda < \lambda_0$, where $\lambda_0 > 0$ is a given constant.
 - (c) (6 pts) Derive an approximately level- (1α) confidence interval for λ .