題號:382

國立臺灣大學95學年度碩士班招生考試試題

科目:微積分(不含線性代數)

題號:382

共 2 頁之第 1 頁

1. (7%)

Prove that if p > 1 and x > 0, $x^p - 1 \ge p(x - 1)$.

2. (7%)

Find the point of the hyperbola $y^2 - \frac{x^2}{2} = 1$ that is nearest to (x, y) = (0, 3), where the distance between a point (a, b) and the origin (0,0) is defined as $\sqrt{a^2 + b^2}$ in the 2-dimensional Euclidean space.

3. (7%)

Let $h(t) = \frac{7}{12}t^3 + t + 1$, $g(t) = t^3 - 2t^2 + 3t$, and $f(t) = (t - 5) + \log_e t$, where \log_e denotes the natural logarithm. Evaluate the second derivative of f(g(h(x))) at x = 0.

4. (9%; 3% each)

Prove or disprove that the limit of each of the following functions exists when x approaches to zero, i.e., $\lim_{x\to 0} f(x)$.

4-a

$$f(x) = \frac{1}{x}, x \in [-1, 1]$$

4-b

$$f(x) = \begin{cases} 1 & \text{if } x = 0 \\ x^2 & \text{otherwise} \end{cases}, x \in [-1, 1]$$

4-c

$$f(x) =$$
the integer part of $(1+x), x \in [-1,1]$

5. (10%)

Suppose that $\lambda > 0$, please solve

$$\lim_{\lambda \to 0} \lambda \int_{\lambda^2}^{\lambda} \frac{\cos(x)}{x^{3/2}} dx.$$

[Hint] Application of the mean value theorem of the integral calculus: If f(x) and g(x) are continuous functions in $a \le x \le b$ and $g(x) \ge 0$, then $\int_a^b f(x)g(x)dx = f(\xi) \int_a^b g(x)dx$, where $a \le \xi \le b$.

6. (10 %)

If
$$\lim_{x\to a} \frac{2x^2 + bx + 3b}{2x - 2a} = 8$$
, then $(a, b) = ?$

題號:382 國立臺灣大學95學年度碩士班招生考試試題

科目:微積分(不含線性代數)

題號:382

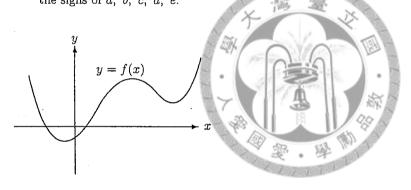
共 2 頁之第 2 頁

7. (10%)

If the inverse function of
$$f(x)$$
 is $f^{-1}(x) = \int_{\frac{2}{\pi}}^{\sqrt{x}} e^t \left(\frac{\sin(\frac{1}{t}) + t^2 \cos(\frac{1}{t})}{t^2} \right) dt$, then $f'\left[f^{-1}\left(\frac{16}{\pi^2}\right)\right] = ?$

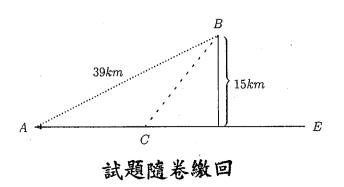
8. (10%)

Calculate
$$\int_0^\infty e^{-\frac{1}{2}x^2} x \sin(2x) dx = ?$$


[Hint]: (1)
$$\int_{-\infty}^{\infty} e^{-x^2} = \sqrt{\pi}$$
; (2) Let $F(\xi) = \int_{0}^{\infty} e^{-\frac{1}{2}x^2} \cos(\xi x) dx$ and consider $F'(\xi)$

9. (10%)

Let
$$S_n = \frac{1}{\sqrt{n}} \left(1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + ... + \frac{1}{\sqrt{n}} \right)$$
. Then Find $\lim_{n \to \infty} S_n = ?$


10. (10%)

Consider the plot of the function, $f(x) = ax^4 + bx^3 + cx^2 + dx + e$, as follows. Please determine the signs of a, b, c, d, e.

11. (10%)

Suppose that the distance between two places A and B is 39 kilometers, and the distance of B to the road \overline{AE} is 15 kilometers (see figure below). Now we want to construct a straight railway \overline{BC} from B to a point C on the road \overline{AE} in order to transport goods from A to B. Assume that the cost of transportation per kilometer on the railway is twice as much as the cost on the road. Please determine the optimal distance between A and C, which realizes the minimal cost!

