國立臺灣大學96學年度碩士班招生考試試題

題號: 47 科目:代數

題號: 47 共 / 頁之第 全 頁

Notation: Z is the set of all integers, Q is the set of all rational numbers and R is the set of all real numbers.

- Let $D = \{3n \mid n \in Z\}$ be a subring of Z and $I = \{15n \mid n \in Z\}$, $J = \{9n \mid n \in Z\}$ are two ideals of D.
 - (1) Is I a prime ideal? Is the quotient ring D/I a finite field? Prove your answer.
 - (2) Is J a prime ideal? Is the quotient ring D/J a finite field? Prove your answer.
 - (3) Find all prime ideals of D.
- Let F be a finite field with order |F| = m and we define that an element $\alpha \in F$ is called a multiple generator in F if $F = \{0,1,\alpha,\alpha^2,\alpha^3,\cdots,\alpha^{m-2}\}$. We have known that for any finite field F, there exist a multiple generator in F.

 (1) If α is a multiple generator in F then is $\alpha^{m-1} = 1$ true? Prove your answer.
 - (2) If $F_{11} = \{0, 1, 2, \dots, 10\}$ is the finite field with order $|F_{11}| = 11$ then find a multiple generator in F_{11} . How many multiple generators in F_{11} ? Prove your answer.
 - (3) If $F_3 = \{0, 1, 2\}$ is the finite field with order $|F_3| = 3$, $f(x) = x^2 + 2x + 2$, $g(x) = x^2 + x + 1$ are polynomials in the polynomial ring $F_3[x]$ and I = (f(x)), J = (g(x)) are principal ideals of $F_3[x]$. Is the quotient ring $F_3[x]/I$ a finite field? If it is a finite field, find a multiple generator in $F_3[x]/I$? Prove your answer.

 Is the quotient ring $F_3[x]/J$ a finite field? If it is a finite field, find a multiple generator in $F_3[x]/I$? Prove your answer.
 - (4) If F is the finite field with order |F| = 25 then how many multiple generators in F? Prove your answer.
- \equiv Let $i = \sqrt{-1}$, u = 7 + 8i and v = 2 + i. Find four integers $a, b, c, d \in \mathbb{Z}$ such that u = v(a + bi) + (c + di) and $c^2 + d^2 < 5$.
- Let E be the splitting field of $x^4 3$ over Q and F be the splitting field of $x^4 4$ over Q. Find the Galois group Gal(E/Q) and the Galois group Gal(F/Q).
- π Find the smallest positive integer n such that n > 30 and for any integer a, $a^n a$ is divisible by 385.
- \Rightarrow Let G be a group and $H = \{a^2 \mid a \in G\}$. If H is a subgroup of G then is G an abelian group? Prove your answer.