國立臺灣大學96學年度碩士班招生考試試題

題號: 407 科目:工程數學(C) 題號:407

_____ 頁之第

第1題到第10題每題5分,請作答於「選擇題作答區」。第1題到第4題為單選;第5題到第10題 為複選,需完全答對才有分數,答錯不倒扣。第11題到第14題,請作答於「非選擇題作答區」。

1. Which one of the following answers satisfies the differential equation $\frac{dy}{dx} = \frac{xy^2 - \cos x \sin x}{y(1-x^2)}$ with the initial

value v(0)=2. (A) $v(1-x^2)-\cos^2 x=1$, (B) $v^2(1-x^2)-\cos^2 x=3$, (C) $v^2(1-x)-\cos^2 x=3$,

- (D) $v(1-x^2) \cos x \sin x = 2$, (E) $v^2(1-x^2) \cos x \sin x = 4$.
- 2. The particular solution of the differential equation $v^{(4)} + v'' = 1 x^2 e^{-x}$ has the form of

(A) $y_p = A + Bx^2e^{-x} + Cxe^{-x} + Ee^{-x}$, (B) $y_p = Ax + Bx^2e^{-x} + Cxe^{-x} + Ee^{-x}$,

(C) $y_n = Ax^2 + Bx^2e^{-x} + Cxe^{-x} + Ee^{-x}$, (D) $y_n = Ax^2 + Bx^3e^{-x} + Cx^2e^{-x} + Exe^{-x}$, (E) none of above.

3. Let F(s) be the Laplace transform of f(t): (A) If $f(t) = e^{at} \cos \omega t$ then $F(s) = \frac{\omega}{(s-a)^2 + \omega^2}$

(B) If $F(s) = \frac{1}{e^n}$ n = 1, 2, 3, ..., then $f(t) = \frac{t^{n-1}}{(n-1)!}$. (C) The Laplace transform of $\frac{df(t)}{dt}$ is sF(s). (D) The

inverse Laplace transform of $\frac{F(s)}{s}$ is $\int f(t)dt$. (E) none of above.

4. We are going to solve the differential equation system: $\frac{dx}{dt} = \frac{1}{2}x$ and $\frac{dy}{dt} = x - \frac{1}{2}y$ with boundary conditions x(0)=3 and y(0)=5. The solution has following forms: $x = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$ and $y = c_3 e^{\lambda_1 t} + c_4 e^{\lambda_2 t}$ with $\lambda_1 < \lambda_2$. $c_1 \sim c_4$ and λ_1 , λ_2 are constants. Which one of the following statements is correct?

(A) $\lambda_1 + \lambda_2 = 1$ (B) $c_2 = c_4$ (C) $c_1 = -c_3$ (D) $c_2 + c_3 = 4$ (E) none of above.

- 5. What statements in the following are correct?
 - (A) $\frac{dy}{dx} + P(x)y = f(x)y^n$ is a linear differential equation for n=0.
 - (B) $\frac{dy}{dx} + P(x)y = f(x)y^n$ is a linear differential equation for n=1.
 - (C) $\frac{dy}{dx} + P(x)y = f(x)y^n$ is a linear differential equation for n=2.
 - (D) $\frac{dy}{dx} + P(x)y = f(x)y^n$ cannot be reduced to a linear differential equation for $n \ne \text{integer}$.
 - (E) $\frac{dy}{dx} + P(x)y = f(x)y^n$ can be reduced to a linear differential equation for n > 4.
- 6. For the differential equation $ax^2y'' + bxy' + cy = 0$ with a, b, and c real numbers,
 - (A) the solution always contains this term px^m , where p and m are real numbers.
 - (B) if a = 1, b = -2, c = -4, then the solution has the form of $y = px^m + qx^n$, where m and n are integers; p and q are real numbers.
 - (C) if a = 4, b = 8, c = 1, then the solution has the form of $y = px^m + qx^n$, where m and n are integers; p and q are real numbers.
 - (D) if a = 4, b = 0, c = 17, then the solution is $y = x^{1/2}[p\cos(2\ln x) + q\sin(2\ln x)]$, where p and q are real
 - (E) if a = 1, b = -3, c = 3, then the solution has the form of $y = px^m + qx^n$, where m and n are integers; p and q are real numbers.
- 7. Consider the differential equation (x-1)y'' + y' = 0.
 - (A) There exist two independent power series solutions centered at 0, both of them having the radius of
 - (B) One of the solution is $c\sum_{k=1}^{\infty}\frac{x^{k}}{k}$ with the radius of convergence 1.

國立臺灣大學96學年度碩士班招生考試試題

題號:407 科目:工程數學(C)

題號:407

共 夕 頁之第 夕 頁

- (C) Let ϕ be the solution associated with the initial conditions y(0) = 0 and y'(0) = 5, then $\phi = 5x$.
- (D) Let ϕ be the solution associated with the initial conditions y(0) = 5 and y'(0) = 0, then $\phi = 5$.
- (E) none of above
- 8. Let L() and $L^{-1}()$ be the Laplace and the inverse Laplace transforms; respectively.

(A)
$$L^{-1}(c,F(s)+c_2G(s))=c_1L^{-1}(F(s))+c_2L^{-1}(G(s))$$
.

(B)
$$L^{-1}((\frac{2}{s} - \frac{1}{s^3})^2) = 4t - \frac{2}{3}t^3 + t^5$$
.

(C)
$$L((\cos t)^2) = \frac{1}{2} (\frac{1}{s} + \frac{s}{s^2 + 4})$$
.

- (D) $L^{-1}(e^{-st_0}) = \delta(t-t_0)$, where δ () is the Dirac Delta function.
- 9. If $f(x) = x^2 + x$ for 0 < x < 2, we are going to expand f(x) in cosine series, sine series and Fourier series. Please find the converged value for different series:
 - (A) f(2) = 6 for cosine series, (B) f(2) = 6 for sine series, (C) f(-1) = 2 for cosine series,
 - (D) f(-1) = 0 for Fourier series, (E) f(-5) = 2 for sine series.
- 10. A thin rectangular plate coincides with the region defined by $0 \le x \le 5$ and $0 \le y \le 3$. The right and top ends of the plate are insulated. The left end of the plate is kept at 0 degree and bottom end is held at temperature f(x). Find the suitable differential equation and boundary conditions for the steady-state temperature u(x,y):

(A)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
, $0 < x < 5$ and $0 < y < 3$, (B) $\frac{\partial u}{\partial x}\Big|_{x=5} = 0$ for $0 < y < 3$, (C) $\frac{\partial u}{\partial y}\Big|_{y=3} = 0$ for $0 < x < 5$,

- (D) u(5, y) = 0 for 0 < y < 3, (E) u(x, 0) = f(x) for 0 < x
- 11. For any matrix A, let $\mathcal{N}(A)$ denote its null space. In the real space \Re^n , consider the inner product $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1$ $+\cdots+x_ny_n$ and 2-norm $\|\mathbf{x}\|=\langle \mathbf{x},\mathbf{x}\rangle^{1/2}$ for every vectors $\mathbf{x}=[x_1\cdots x_n]^T$ and $\mathbf{y}=[y_1\cdots y_n]^T$ in \Re^n . Suppose S is a subspace of \mathbb{R}^n . Let S^{\perp} be the orthogonal complement of S in \mathbb{R}^n . For the following matrix A, (a) find a basis β for $\mathcal{N}(A)^{\perp}$, and (b) check if $\mathbf{x} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}^T$ is a vector with the smallest 2-norm satisfying $Ax = [1221]^T$ and explain why. (15%)

$$A = \begin{bmatrix} 3 & 3 & 1 & 3 & 3 \\ 2 & 4 & 2 & 4 & 2 \\ 0 & 3 & 2 & 3 & 0 \\ -1 & 1 & 1 & 1 & -1 \end{bmatrix}$$

12.
$$X = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$
. $X^{50} = ? (10\%)$

13. Use Gaussian elimination procedures to find the reduced row echelon form, rank, and nullity of the matrix below: (10%)

$$\begin{bmatrix} 1 & 0 & -2 & -1 & 0 & -1 \\ 2 & -1 & -6 & -2 & 0 & -4 \\ 0 & 1 & 2 & 1 & 1 & 1 \\ -1 & 2 & 6 & 3 & 1 & 2 \end{bmatrix}$$

14. Find an orthogonal basis for the subspace C([0, 1]) that is spanned by $\{1, e^i, e^{-i}\}$. (15%)

Note: The definition of an inner product for f and g in C([a, b]) is

$$\langle f, g \rangle = \int_{a}^{b} f(t) g(t) dt$$