國立臺灣大學97學年度碩士班招生考試試題

題號: 48 科目:常微分方程

題號: 48

共 頁之第 頁

1. (a) (10%) Solve the differential equation

$$\frac{dy}{dt} = y(y-\alpha)(1-y), \ 0 < \alpha < 1.$$

You may express the solutions in implicit form.

- (b) (10%) Show that for any initial datum $y(0) = y_0$, the corresponding solution $y(t) \to 1$ or 0, as $t \to \infty$ depending on $y_0 > \alpha$ or $y_0 < \alpha$.
- 2. (a) (10 points) Find general solutions of the forced damping oscillator:

$$y'' + \gamma y' + \omega_0^2 y = A \sin \omega t$$

where $\gamma \geq 0, \omega_0 \geq 0, \omega > 0, A > 0$ are constants.

- (b) (5%) If $\gamma > 0$, what is the corresponding asymptotic solution? Show that general solutions tend to the asymptotic solution as $t \to \infty$.
- (c) (5%) If $\gamma = 0$ and $\omega = \omega_0$, what is the corresponding solution? Show that the solution $|y(t)| \to \infty \text{ as } t \to \infty.$
- 3. For functions defined on $(0,\infty)$ and satisfying $|y(t)| \leq Me^{at}$ for some positive constants M and a, define the Laplace transform

$$L(y)(s) := \int_0^\infty e^{-st} y(t) dt$$
, $Re(s) > a$,

and the convolution operation:

$$(f * g)(t) := \int_0^t f(t - \tau)g(\tau) d\tau, \ t > 0.$$

- (a) (10%) Show that L(f * g) = L(f) L(g).
- (b) (10%) Consider a differential operator $P(D) := (D^2 + \omega^2)$, where D = d/dt, $\omega > 0$ is a constant. The solution corresponding to

$$P(D)y = f$$
, with $y(0) = y'(0) = 0$

can be expressed as y(t) = (G * f)(t). Find explicit expression of G.

4. Find the stationary points (equilibria) of the following predator-prey system

$$x' = x(y-1), \ y' = ry(1-x),$$

where r > 0 is a constant.

- (a) (5%) Find the equilibria (stationary points).
- (b) (5%) Classify the qualitative behaviors (sink, source, saddle, spiral,...) of the equilibria.
- (c) (10%) Sketch the solution structure on the x-y plane in the first quadrant (i.e. equilibria, nullclines, vector field, trajectories).
- 5. Consider the linear equation:

$$\begin{cases} x' = 3x - 4y + f(t) \\ y' = x - y \end{cases}$$

- (a) (10%) When $f(t) \equiv 0$, find the general solutions.
- (b) (10%) When $f(t) = e^t$, what is the corresponding general solutions?