國立臺灣大學97學年度碩士班招生考試試題

科目:工程數學(C)

題號:410

共 6 頁之第 1 頁

第一大題為選擇題,共有 16 題。考生應以 2B 鉛筆作答於「答案卡」,未依規定作答於答案卡者,本大題不予計分。

單選題(1至6題,每題5分)

1. Given the linear operator T with standard matrix $\begin{bmatrix} T \end{bmatrix}_E = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$ and

B-matrix $[T]_B = \begin{bmatrix} 1 & 9 & -6 \\ 0 & 7 & -4 \\ 2 & 11 & -8 \end{bmatrix}$, which can be a correct basis for B?

(A)
$$\left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -5 \\ 4 \end{bmatrix}, \begin{bmatrix} 4 \\ -3 \\ 9 \end{bmatrix} \right\}$$

$$(B) \left\{ \begin{bmatrix} -1\\4\\2 \end{bmatrix}, \begin{bmatrix} 3\\6\\2 \end{bmatrix} \right\}$$

(C)
$$\begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$$

- (E) None of the above.
- 2. The commutator of two $n \times n$ matrices A and B is defined as [A, B] = AB BA. Let $\underline{0}$ denote the $n \times n$ zero matrix. For $n \times n$ matrices A, B, and C, which of the following statements is NOT correct?
- (A)[A, B] = -[B, A].
- (B) [A, B+C] = [A, B] + [A, C].
- (C) [A, BC] = [A, B]C + B[A, C].
- (D) [A, [B, C]] + [B, [A, C]] + [C, [A, B]] = $\underline{0}$.
- (E) If [A, B] = 0 and [B, C] = 0, then [A, C] = 0.

國立臺灣大學97學年度碩士班招生考試試題

科目:工程數學(C)

題號:410

共 6 頁之第 2 頁

3. An $n \times n$ matrix A is called diagonalizable if $A = PDP^{-1}$ for some diagonal $n \times n$ matrix D and some invertible $n \times n$ matrix P. Choose the following matrix which is diagonalizable.

(A)
$$\begin{bmatrix} -1 & 0 & 0 \\ -4 & -2 & 5 \\ -4 & -5 & 8 \end{bmatrix}$$
 (B) $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ (C) $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 5 & 5 & -6 \\ 0 & -1 & 0 \\ 3 & 2 & -4 \end{bmatrix}$

(E)
$$\begin{bmatrix} 5 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 2 & 0 \end{bmatrix}$$

4. **u** and **v** are orthogonal if $\mathbf{u} \cdot \mathbf{v} = 0$. The S^{\perp} is the set of all vectors in R^n that are

orthogonal to every vector in
$$S$$
. Consider the set $S = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in R^3 : x_1 - x_2 + x_3 = 0 \right\}$.

Choose the following statement which is correct.

$$(A) \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \in S^{\perp} (B) \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \in S$$

(C) S is a subspace of R^3 and dim S = 1.

(D) Let
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \mathbf{w} + \mathbf{z}$$
 such that $\mathbf{w} \in S$ and $\mathbf{z} \in S^{\perp}$, then $\mathbf{z} = \begin{bmatrix} \frac{1}{3} \\ -1 \\ \frac{1}{3} \end{bmatrix}$.

(E)
$$\left\{ \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\-1 \end{bmatrix} \right\} \text{ is a basis for } S.$$

國立臺灣大學97學年度碩士班招生考試試題

科目:工程數學(C)

題號:410

共 6 頁之第 3 頁

5. The integrating factor of a(x)y'(x) = b(x)y(x) + f(x) is

(A)
$$e^{\int b(x)dx}$$
, (B) $e^{-\int \frac{b(x)}{a(x)}dx}$, (C) $e^{-\int f(x)dx}$, (D) $e^{\int \frac{f(x)}{a(x)}dx}$, (E) $e^{\int \frac{b(x)}{a(x)}dx}$

6. What is the solution of f(t)? (hint: using the Laplace transform)

$$\int_{\Gamma} e^{\tau} \sin(t-\tau) d\tau = \int_{\Gamma} f(\tau) d\tau$$

(A)
$$\frac{1}{2}e'\sin(t) + \frac{1}{\sqrt{2}}e'\cos(t)$$
, (B) $\frac{1}{\sqrt{2}}\sin(t) + \frac{1}{\sqrt{2}}\cos(t)$, (C) $\frac{1}{4}e' + \frac{1}{2}\cos(t + \frac{\pi}{4})$,

(D)
$$\frac{1}{\sqrt{2}}e^{t}\cos\left(t+\frac{\pi}{4}\right)$$
, (E) $\frac{1}{2}e^{t}+\frac{1}{\sqrt{2}}\sin\left(t-\frac{\pi}{4}\right)$

複選題(7至16題,每題5分。完全答對才計分,不倒扣)

- 7. Which of the following statements are correct?
- (A) For an $n \times n$ matrix A, the columns of A are linearly independent if and only if the rows of A are linearly independent.
- (B) For an $m \times n$ matrix A, the nullity of A equals the nullity of its transpose A^T .
- (C) An $m \times n$ matrix A defines some linear transformation T_A : $\mathbb{R}^n \to \mathbb{R}^m$. T_A is onto if and only if rank A = m.
- (D) A set S of vectors forms a basis for a subspace $V \circ f R^n$ if and only if the vectors of S are linearly independent and the number of vectors in S equals the dimension of V.

(E) The set
$$V = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 : 3x_1 + 2x_2 - x_3 = 1 \right\}$$
 is not a subspace of \mathbb{R}^3 .

8. Suppose the matrix
$$\begin{bmatrix} 1 & 2 & 3 & 1 & b \\ 2 & 5 & 3 & a & 0 \\ 1 & 0 & 8 & 6 & c \end{bmatrix}$$
 can be transformed to the reduced row

echelon form
$$\begin{bmatrix} 1 & 0 & 0 & -2 & 0 \\ 0 & 1 & 0 & d & -1 \\ 0 & 0 & 1 & 1 & e \end{bmatrix}$$
. Which of the following equalities are correct?

(A)
$$a=1$$
. (B) $b=3$. (C) $c=40/3$. (D) $d=-1$. (E) $e=2$.

題號:410 國立臺灣大學97學年度碩士班招生考試試題

科目:工程數學(C)

題號:410

頁之第 4 頁

9. An affine transformation of R^2 is a function $T: R^2 \to R^2$ of the form $T(\bar{x}) = A\bar{x} + \bar{b}$, where A is an invertible 2×2 matrix and $\vec{b} \in \mathbb{R}^2$. Which of the following statements are correct?

- (A) $T^{-1}(\bar{x}) = A^{-1}\bar{x} A^{-1}\bar{b}$.
- (B) Affine transformations map straight lines to straight lines.
- (C) There is no affine transformation that can map a straight line to a circle.
- (D) Affine transformations map parallel straight lines to parallel straight lines.
- (E) There exists an affine transformation that maps parallel straight lines to intersecting straight lines.
- 10. Define the linear operator T on R^2 by $T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{bmatrix} -2x_2 \\ -3x_1 + x_2 \end{bmatrix}$. Which statements

in the following are correct?

- (A) 3 is an eigenvalue of T.
- (B) 4 is an eigenvalue of T.
- (C) -2 is an eigenvalue of T.
- (D) $\left\{\begin{bmatrix} -2\\3 \end{bmatrix}\right\}$ is a basis for the eigenspace of T.
- (E) $\left\{ \begin{bmatrix} 3 \\ 3 \end{bmatrix} \right\}$ is a basis for the eigenspace of T.
- 11. A subset of R^n is called an orthogonal set if every pair of distinct vectors in the set is orthogonal. An orthogonal projection of vonto a subspace W is defined as a vector, $w \in W$ such that v = w + z, where $z \in W^{\perp}$. Which statements in the following are
- (A) Any orthogonal set of nonzero vectors is linearly independent.
- (B) Every subspace has an orthogonal basis.
- (C) For any matrix A, $(Row A)^{\perp} = Null A$.
- (D) Let W be a subspace of R^n and v be a vector in R^n . Among all vectors in W, the vector closest to v is the orthogonal projection of v onto W¹.
- (E) For any subspace W of \mathbb{R}^n , $\dim \mathbb{W} + \dim \mathbb{W}^{\perp} = n$.

國立臺灣大學97學年度碩士班招生考試試題

科目:工程數學(C)

題號:410

題號:410

共 6 頁之第 5 頁

12. Let F(R) denote the set of all functions from R to R. Choose the following subsets of F(R) which are linearly independent.

(A)
$$\{t^2 - 2t + 5, 2t^2 - 4t + 10\}$$
 (B) $\{\sin t, \sin^2 t, \cos^2 t, 1\}$ (C) $\{t^2 - 2t + 5, 2t^2 - 5t + 10, t^2\}$

(D)
$$\{t,t\sin t\}$$
 (E) $\{e^t,e^{2t},\cdots,e^{nt},\cdots\}$

- 13. Consider the equation $\ddot{x}(t) + 16x(t) = 0$
- (A) There are infinite many solutions.
- (B) There are no solutions.
- (C) There are two independent solutions.
- (D) There are no solutions for x(0) = 0, and $x(\frac{\pi}{2}) = 0$.
- (E) There are infinite many solutions for x(0) = 0, and $x(\frac{\pi}{2}) = 1$.
- 14. Consider $\dot{X}(t) = AX(t)$, where A is an n by n matrix, X(t) is an n by 1 vector, $n \ge 2$
- (A) e^{At} = Inverse Laplace transform of $(sI A)^{-1}$
- (B) $X(t) = e^{At}C = Ce^{At}$ for any *n* by 1 vector C
- (C) (sI A) is nonsingular for any scalar s
- (D) e^{At} is nonsingular for any scalar t

(E)
$$\frac{d}{dt}e^{At} = Ae^{At} = e^{At}A.$$

- 15. What are the function sets listed as follows orthogonal on the interval [0, 1]?
- (A) $\{1, \cos 2\pi x, \cos 4\pi x, \cos 6\pi x, \dots \}$
- (B) $\{1, x, x^2, x^3, \dots \}$
- (C) $\{1, \sin 4\pi x, \sin 8\pi x, \sin 12\pi x, \dots \}$
- (D) $\{P_0(2x-1), P_1(2x-1), P_2(2x-1), P_3(2x-1), \dots\}$, where $P_n(x)$ means the Legendre polynomial.
- (E) $\{I_0(x), I_1(x), I_2(x), I_3(x), \ldots\}$, where $I_v(x)$ is the modified Bessel function of the first kind.

國立臺灣大學97學年度碩士班招生考試試題

科目:工程數學(C)

題號:410

頁之第 6 共 6 頁

16. Suppose that f(x) = 0 for 0 < x < 1, f(x) = -x + 3 for 1 < x < 3,

$$g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi}{2} x$$
, $a_0 = \int_0^2 f(x) dx$

$$a_0 = \int_0^2 f(x) dx$$

What statements in the following are correct?

(A)
$$g(x) = g(-x)$$
, (B) $g(1) = 1$, (C) $g(x) = g(x+2)$, (D) $g(-3/2) = 0$, (E), $g(7/2) = 0$.

第二大題為計算題,共有 2 題,每題 10 分。考生應於試卷上「非選擇題作答區」註明題 號,依序作答。

17. Solve y(x)

$$y''(x) + 2y'(x) + y(x) = e^{-x}$$
 with $y(0) = y'(0) = 1$

(10 points)

18. Use separation of variables to find the product solutions for the following partial differential equation.

$$x\frac{\partial u(x,y)}{\partial x} = y\frac{\partial u(x,t)}{\partial y}.$$

(10 points)