題號: 76 共 夕 頁之第 / 頁 Part I 與 Part II 分開作答 答案須清楚標示題號 Part I: (Total score 50%) A: Multiple Choices 多選題(答錯倒扣)填答於答案紙上 (20%) - 1. Which of the following term symbols belong to the electronic configuration of f^2 (a) 3 H (b) 3 G (c) 1 F (d) 1 D (e) 1 P - 2. Which of the following molecules or ions have sp^3 hybridization and formal charge of +1 for the central atom: - (a) NO_3^- (b) BF_4^- (c) $S_2O_3^{2-}$ (d) ICl_2^+ (e) ClO_3^- - 3. Among the following diatomic molecules, which of them have multiple bonds - (a) B_2 (b) C_2 (c) Li_2 (d) O_2^+ (e) F_2 - 4. Two fragments are isolobal if their highest energy orbitals have the same symmetry, similar energies and the same electron occupation. Which of the following fragments conform with isolobal analogy: - (a) CH (b) CH₂ (c) Co(CO)₃ (d) Co(CO)₄ (e) HFe(CO)₃ B: - 5. Using the character table of D_{3h} shown below, derive irreducible representations for the three σ bonds of BF₃, and using projection operator method to find the group orbitals for each representation. 10% - 6. Olefin metathesis is now a day an important process for the preparation of various organic compounds and polymers. Cyclohexene undergoes Ring Opening Metathesis Polymerization (ROMP) with a catalyst R₃Al/WCl₆ producing a polymer. Draw structure of the product and write a mechanism of polymerization. 10% - 7. Explain briefly the following terms: 10% - (a) Spectrochemical series (b) phosphorescence (c) oxidative addition (d) amphoterism (e) Hund's rule Part II: (Total score 50%) - 8. Give proper explanations for the following observation. (10%) - (a) O₂ is a paramagnetic compound. - (b) HClO₂ is a weak acid, while HClO₄ is a strong acid - (c) CCl₄ does not react with water, but SiCl₄ reacts with water to form SiO₂. - (d) At room temperature, CO₂ is a gas but SiO₂ is a solid. - (e) Diamond is one of the hardest materials, but graphite is often used as a lubricant. - Indicate the <u>coordination numbers</u> of the cations and anions in the following solids, and calculate the <u>density</u> for each solid. - (a) sodium iodide (NaCl structure; $r_{Na+} = 102$ pm, $r_{I^-} = 220$ pm; atomic weight of Na = 23.0, atomic weight of I = 126.9) (5%) - (b) cesium bromide (CsCl structure; $r_{Cs^+} = 170$ pm, $r_{Br^-} = 196$ pm; atomic weight of Cs = 132.9, atomic weight of Br = 79.9) (5%) - 10. Given the reduction potential $E_A{}^0 = 0.771 \text{ V for Fe}^{3+} + \text{e}^{-} \rightarrow \text{Fe}^{2+}$ (where A represents at [H⁺] = 1 M condition) and $Ksp = 4.87 \times 10^{-17}$ and 2.79×10^{-39} for Fe(OH)₂ and Fe(OH)₃, respectively. - (a) Write the Nernst equations for the two half reactions: $Fe^{3+} \rightarrow Fe^{2+}$ and $Fe(OH)_3 \rightarrow Fe(OH)_2$. - (b) What is reduction potential E_B^0 for the Fe(OH)₃ \rightarrow Fe(OH)₂ couple (where B represents at [OH] = 1 M condition)? (6%) - 11. The Mn²⁺(aq) ion is pale pink, but the MnO₄⁻ ion is deep purple. Characterize the origins of the transitions and explain the relative intensities. (10%) ## 國立台灣大學九十四學年度碩士班招生考試試題 ## 科目:無機化學 題號: 76 共 2頁之第 2 頁 12. Using the descending of symmetry if necessary, find the term symbols for the following electron configurations in octahedral crystal field. (10%) (a) $t_{2g}^{i}e_{g}^{i}$ (b) e_g² Correlation table | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | CONTONUE ON TOOLS | | |--|---------------------------|-------------------| | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | O _h | C _{2y} | | $\begin{array}{cccc} E_{g} & A_{1} + A_{2} \\ T_{1g} & A_{2} + B_{1} + B_{2} \\ T_{2g} & A_{1} + B_{1} + B_{2} \\ A_{1u} & A_{2} \\ A_{2u} & A_{1} \\ E_{u} & A_{1} + A_{2} \\ T_{1u} & A_{1} + B_{1} + B_{2} \end{array}$ | Alg | | | $\begin{array}{cccc} E_{g} & A_{1} + A_{2} \\ T_{1g} & A_{2} + B_{1} + B_{2} \\ T_{2g} & A_{1} + B_{1} + B_{2} \\ A_{1u} & A_{2} \\ A_{2u} & A_{1} \\ E_{u} & A_{1} + A_{2} \\ T_{1u} & A_{1} + B_{1} + B_{2} \end{array}$ | A_{2g} | A ₂ | | $\begin{array}{ccc} T_{2g} & A_1 + B_1 + B_2 \\ A_{1u} & A_2 \\ A_{2u} & A_1 \\ E_u & A_1 + A_2 \\ T_{1u} & A_1 + B_1 + B_2 \end{array}$ | $\mathbf{E}_{\mathbf{g}}$ | $A_1 + A_2$ | | $\begin{array}{ccc} T_{2g} & A_1 + B_1 + B_2 \\ A_{1u} & A_2 \\ A_{2u} & A_1 \\ E_u & A_1 + A_2 \\ T_{1u} & A_1 + B_1 + B_2 \end{array}$ | $\mathrm{T_{lg}}$ | $A_2 + B_1 + B_2$ | | A_{2u} A_{1} $A_{1}+A_{2}$ $A_{1}+B_{1}+B_{2}$ | | $A_1 + B_1 + B_2$ | | $ \begin{aligned} & E_{u} & A_{1} + A_{2} \\ & T_{lu} & A_{1} + B_{1} + B_{2} \end{aligned} $ | A_{1u} | A_2 | | $T_{lu} A_1 + B_1 + B_2$ | A_{2u} | A_1 | | | E_{u} | $A_1 + A_2$ | | $T_{2u} \qquad \qquad A_2 + B_1 + B_2$ | | $A_1 + B_1 + B_2$ | | | T _{2u} | $A_2 + B_1 + B_2$ | ## Character Table | Дзь | E | 2C3 | 3C2 | O_h | 253/ | 30v | |------------------|---|-----|-----|-------|------|-------| | A ₁ ' | 1 | 1 | 1 | 1 | 1 | 10 | | A2' | 1 | 1 | -1 | 1 | 1 | -1 | | E' | 2 | -1 | 0 | 2 |) IÇ | 0 | | A1" | 1 | 1 | 1 | -1 | 143 | ŹΠ | | A2" | 1 | 1 | -1 | -1 | -1 | W 200 | | Ε" | 2 | -1 | 0 | -2 | 1 | 0707 | | Oh | E | 8C₃ | 6C2 | 6C4 | 3C2 | i | 6S4 | 856 | 3σ _h | 6o _d | |-----------------|---|-----|-----|-----|-----|----|-----|-----|-----------------|-----------------| | Aig | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | A _{2g} | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | | E_g | 2 | -1 | 0 | 0 | 2 | 2 | 0 | -1 | 2 | 0 . | | T_{1g} | 3 | 0 | -1 | 1 | -1 | 3 | 1 | 0 . | -1 | -1 | | T_{2g} | 3 | 0 | 1 | -1 | -1 | 3 | -1 | 0 | -1 | 1 | | Azu | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | | A _{2u} | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | | Eu | 2 | -1 | 0 | 0 | 2 | -2 | 0 | 1 | -2 | 0 | | Tiu | 3 | 0 | -1 | 1 | -1 | -3 | -1 | 0 | 1 | 1 | | T_{2u} | 3 | 0 | 1 | -1 | -1 | -3 | 1 | 0 | 1 | -1 | | C ₂ v | E | C ₂ | $\sigma_{v}(xz)$ | $\sigma'_{v}(yz)$ | |------------------|---|----------------|------------------|-------------------| | A _I | 1 | 1 | 1 | 1 | | A ₂ | 1 | 1 | -1 | -1 | | B_1 | 1 | -1 | 1 | -1 | | B ₂ | 1 | -1 | -1 | 1 | 試題隨卷繳回