題號:253

共 2 頁之第 / 頁

- 1. (30%) Write down on the answer sheet the correct answer to each of the following questions. (Derivations are not required.) (本題請於答案卷之「選擇題作答區」內作答)
 - (1) The directional derivative of the scalar function $\varphi(x, y, z) = xy z^2$ evaluated at point (1, -1, 1) along the direction $3\mathbf{i} 4\mathbf{k}$ is

 (a) 5; (b) 1; (c) -11/5; (d) 11/5; (e) 11.
 - (2) The line integral $\oint_C \mathbf{F} \cdot d\mathbf{r}$ of the 2-D vector function $\mathbf{F} = \frac{-y}{x^2 + y^2} \mathbf{i} + \frac{x}{x^2 + y^2} \mathbf{j}$ evaluated over the closed path C: $(x-2)^2 + (y-2)^2 = 9$ is (a) π ; (b) 0; (c) 2π ; (d) 6π ; (e) $\pi/2$.
 - (3) Let $\underline{\mathbf{F}}(r,\theta) = (-1/r)\underline{\mathbf{e}}_r$ be a 2-D vector function given in terms of polar coordinates (r,θ) with $\underline{\mathbf{e}}_r$ and $\underline{\mathbf{e}}_\theta$ denoting the base vectors of the coordinate system, then $\nabla \cdot \underline{\mathbf{F}} = ?$

(a) 0; (b) $-1/r^2$; (c) $1/r^2$; (d) $1/r^3$; (e) $2/r^2$.

Let $f(x) = a_o + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]$ be the Fourier series representation of the function f(x) over the interval $-L \le x \le L$. Answer questions (4)~(6).

(4) Which of the following statements regarding to the above Fourier series is true?

(a) $a_0 = \frac{1}{r} \int_{-L}^{L} f(x) dx$; (b) If f(x) is an odd function in [-L, L], then $b_n = 0$ for all n;

(c) $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$; (d) $a_n = \frac{2}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$;

(e) $\frac{1}{2L} \int_{-L}^{L} f^2(x) dx = a_o^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$.

(5) If in the interval [-2, 2], f(x) is defined as $\begin{bmatrix} f(x) = 5 & x = -2 \\ = -x & -2 < x \le 0 \\ = x^2 - 1 & 0 < x \le 2 \end{bmatrix}$, then the Fourier series at

x = 2 converges to (a) 7/2; (b) 3; (c) 0; (d) 4; (e) 5/2.

(6) Let $f(x) = \cos^2(\pi x/2)$ in the interval [-2, 2], then which of the following statements is true?

(a) $a_n = 0$ for all n; (b) $\sum_{n=1}^{\infty} (a_n^2 + b_n^2) = 1/4$; (c) $a_0 = 1/4$; (d) $a_1 = 1$; (e) $\sum_{n=1}^{\infty} (a_n^2 + b_n^2) = 1/2$.

(7) Let $\delta(t)$ denote Dirac delta function and $f(t) = \cos t$, then the Fourier transform of $\delta(t-2) f(t)$ is: (note that Fourier transform is defined as $\Im\{g(t)\} = \int_{-\infty}^{\infty} g(t) e^{-i\omega t} dt$)

(a) 0; (b) $e^{-2i\omega}$; (c) $e^{-i(\omega+2)}/\omega$; (d) $e^{-2i\omega}\cos 2$; (e) 1.

(8) Let z = x + iy denote complex variable, then which of the following statements is true?

(a) $f(z) = \ln z$ is an analytic function in $-2\pi \le \arg(z) \le 2\pi$; (b) $z^3 + i = 0$ has infinitely many complex roots; (c) $f(z) = \sqrt{z}$, has a Taylor series expansion about z = 0; (d) $f(z) = (1 - \cos z)/z$ has a simple pole at z = 0; (e) $\oint_C dz/[z(z^2 + 4)] = 0$ over the closed circle C: |z + 3| = 2.

國立台灣大學九十四學年度碩士班招生考試試題

科目:工程數學(B)

題號: 253

共 2 頁之第 2 頁

- (9) The residue of the complex function $f(z) = \frac{\sin z}{[z(z+i)^2]}$ at z = -i is

 (a) $i\cos i \sin i$; (b) $-i\sin i$; (c) $-i\cos i + \sin i$; (d) 0; (e) $(i\cos i \sin i)/2$.
- (10) What is the value of the complex integral $\oint_C z e^{1/z} dz$ over C: |z| = 2?
 - (a) 0; (b) $2\pi i$; (c) $4\pi i$; (d) πi ; (e) 2π .
- 2. (10%) Consider the following equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - u$$

subject to boundary conditions: u(0,t) = u(1,t) = 0 (t > 0)

and initial condition: $u(x,0) = \sin(\pi x)\cos(\pi x)$ $(0 \le x \le 1)$

Solve the problem by using the method of separation of variables. (Other methods are not allowed.)

- 3. (15%) Find the positive eigenvalues and corresponding eigenfunctions of the Sturm-Liouville problem: $y'' + (1 + \lambda)y = 0$, y(0) + y'(0) = 0, $y(\pi) + y'(\pi) = 0$
- 4. (15%) Find the general solution of $\frac{dy}{dx} = \frac{2x^2 y}{x \ln(x)}$.
- 5. (15%) Answer the following questions.
 - (1) Consider a set V, consisting of all the real solution functions y(x) of the ordinary differential equation: $\frac{d^2y}{dx^2} 6\frac{dy}{dx} + 9y = 0$. Is V a real linear vector space? If yes, find the dimension and a basis of the
 - vector space V.

 (2) The vector v has components (1,-2,-1) with respect to the basis {(1,-1,1),(1,1,0),(1,0,1)} of R³. Find its components with respect to the standard basis {(1,0,0),(0,1,0),(0,0,1)}.
 - (3) Which set or sets of the following vectors can form a basis for R³? (a), (b), (c), and/or (d)?
 - (a) (1,2,-1) and (0,3,1)
 - (b) (2,4,-3), (0,1,1), and (0,1,-1)
 - (c) (1,5,-6), (2,1,8), (3,-1,4), and (2,1,1)
 - (d) (1,3,-4), (1,4,-3), and (2,3,-11)
- 6. (15%) Consider the following system of ordinary differential equations

$$\frac{du}{dt} = Au \text{ where } u = \begin{pmatrix} u_1(t) \\ u_2(t) \\ u_3(t) \end{pmatrix} \in \mathbb{R}^3 \text{ and } A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix}.$$

- (1) Find the eigenvalues and the associated eigenvectors of matrix A.
- (2) Find the exponential of the matrix At.
- (3) Find the general solution of the system of ordinary differential equations.