本試題禁用計算機作答

- 1. Assume the root-mean-square average speed of a hydrogen molecule (H₂) at temperature $T_{\rm H}$ is $\nu_{\rm H}$. What is the root-mean-square average speed of an oxygen molecule (O₂) at temperature $T_{\rm O}$? (10%)
- 2. An airplane is flying from city A to city B. Assume the distance is L, the speed of airplane is v_a , and the speed of wind is v_w . Due to the wind, the direction of the airplane must be turned at an angle θ as shown in Fig. 1.
 - (a) What is the angle θ ? (5%)
 - (b) What is the time needed for the airplane to fly from city A to city B? (5%)

Fig.1 Problem 2.

Fig.2 Problem 3.

- 3. A light ray enters a prism of refractive index n and vertex angle ϕ at point A with an incident angle θ (Fig. 2). The light ray is then refracted at point B. Assume θ is carefully adjusted such that the light ray emerges along the surface of the prism.
 - (a) What is the prism index n? (15%)
 - (b) When $\phi = 90^{\circ}$, what is the maximum value of n? (5%)
- 4. The Gauss law is $\varepsilon_0 \int_S \mathbf{E} \cdot d\mathbf{S} = q$, where ε_0 is the permittivity of free-space, S is a closed surface of integration, E is the electric field, and q is the enclosed net charge.
 - (a) Show that the potential function $\phi = k/r$ satisfies the Gauss law, where k is a constant. And find the charge q (in terms of k and other constants). (10%)
 - (b) Assume the potential function becomes $\phi = A \left[\exp(-r/L) \right] / r$, where A and L are constants. Find the charge q as a function of r. What is q at infinity? (10%)
- 5. The electric field components of a plane electromagnetic wave traveling in the positive z direction can be written as $E_x = E_{\text{mx}} \cos[\omega(t-z/c)]$, $E_y = E_{\text{my}} \cos[\omega(t-z/c)]$, and $E_z = 0$, where E_{mx} and E_{my} are constants.
 - (a) What are the magnetic field components B_x , B_y , and B_z ? (10%)
 - (b) What are the instantaneous energy flow rate and the intensity of the wave? (10%)
- 6. Consider a particle of mass m falling down from a building. Due to air resistance, the equation of motion of is written as $md^2z/dt^2 = mg \alpha v$, where z is the position, v is the velocity, g is the acceleration of gravity, and α is a positive constant. Assume v is zero initially and the time needed to reach the ground is τ .
 - (a) Find ν a function of t. (10%)
 - (b) What is the height of the building? (5%)
 - (c) From the result of part (b), show that the height of the building is approximately equal to $g\tau^2/2$ when α is small. (5%)