國立台灣大學九十四學年度碩士班招生考試試題

科目:工程數學(D)

題號:463

共一頁之第全頁

1. (20%) Suppose that n people have their hats returned at random. Let $X_i = 1$ if the *i*th person gets his or her own hat back and 0 otherwise. Let $S_n = \sum_{i=1}^n X_i$. Then S_n is the total number of people who get their own hats back. Please calculate the followings

- (a) $E(X_i^2)$ (5%)
- (b) $E(X_i \bullet X_i)$ for $i \neq j$. (5%)
- (c) $E(S_n^2)$. (5%)
- (d) $V(S_n)$. (5%).
- 2. (20%) Let *U*, *V* be random numbers chosen independently from the interval [0; 1] with uniform distribution. Find the cumulative distribution and density of each of the variables
- (a) Y = U + V.
- (b) Y = |U V|
- 3. (10%) Prove that if A and B are independent so are A and B.
- 4. (10%) Find T such that TH = F, where

5. (20%) Let T be the linear operator on \mathbb{R}^3 defined by

$$T\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_1 - a_2 \\ a_2 - a_1 \\ a_3 \end{pmatrix}.$$

- (a) What are the nonzero eigenvalues of T?
- (b) Find the eigenspace of T corresponding to each nonzero eigenvalue.
- 6. (20%) Label the following statements as being true or false. (No explanation is needed. Each correct answer gets 2% and each wrong answer gets 0%):
 - (a) Every vector space has a finite basis.
 - (b) Let V be an inner product space and S be a subset of V. Then $S \subseteq (S^{\perp})^{\perp}$.
 - (c) If A is invertible, then A^t is also invertible and $(A^t)^{-1} = A^{-1}$.
 - (d) Let $T, U: V \to W$ be linear transformations. Then $R(T+U) \subseteq R(T) + R(U)$.
 - (e) Any system of n linear equations in n unknowns has at least one solution.
 - (f) If both rows of a 2×2 matrix A are identical, then det(A) = 0.
 - (g) Eigenvectors corresponding to the same eigenvalue are always linearly dependent.
 - (h) An inner product is a scalar-valued function on the set of ordered pairs of vectors.
 - (i) If $\langle x, y \rangle = 0$ for all x in an inner product space, then y = 0.
 - (j) Every orthonormal set is linearly independent.