題號:

1. Consider the matrix

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

- (a) Is A a Hermitian matrix? What can one say about the eigenvalues and eigenvectors of a Hermitian matrix?
- (b) Find the eigenvalues and eigenvectors of the matrix A.

[20 points]

- (c) Given that α is a real parameter, what are the eigenvalues and eigenvectors of $\exp(\alpha A)$, an exponential function of αA defined by $\exp(\alpha A) = \sum_{k=0}^{\infty} \frac{(\alpha A)^k}{k!}$?
- 2. Given the vector $\vec{A} = (x^2 y^2)\vec{i} + 2xy\vec{j}$. [20 points]
 - (a) Evaluate the surface integral $\int (\nabla \times \vec{A}) \cdot d\vec{\sigma}$ over a rectangle in the (x, y) plane bounded by the lines x = 0, x = a, y = 0, y = b. Here, $d\vec{\sigma}$ is a surface element vector.
 - (b) Evaluate the line integral $\oint \vec{A} \cdot d\vec{\ell}$ around the boundary of the rectangle. Here, $d\vec{\ell}$ is a line element vector.
 - (c) Compare the results you have obtained for (a) and (b). What theorem of vector analysis is relevant to the conclusion you draw from the comparison?
- 3. The Laplace transform of a function f(t) is defined by [20 points]

$$\mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t)dt = F(s),$$

where s is chosen so as to make the improper integral above converge.

- (a) Given that $\mathcal{L}\{\sin at\} = a/(s^2 + a^2)$ and $\mathcal{L}\{\cos at\} = s/(s^2 + a^2)$ with s > 0, what is the Laplace transform of the convolution integral $f(t) = \int_0^t \sin(t \tau) \cos 2\tau \, d\tau$.
- (b) Assuming that the Laplace transform can be computed term by term, evaluate the Laplace transform of $J_0(t) = \sum_{0}^{\infty} \frac{(-1)^n t^{2n}}{2^{2n} (n!)^2}$, the Bessel function of the first kind of order zero. You are supposed to sum the resulting series of the transform done term by term.

國立臺灣大學95學年度碩士班招生考試試題

題號: 66 科目:應用數學(C)

共 Z 頁之第 Z

[20 points] 4. Consider the differential equation

$$L[y] \equiv y''' - 4y' = t + 3\cos t + e^{-2t}$$

where y' and y''' represent respectively the first and the third derivatives of y with respect to the independent variable t.

- (a) Find the general solution of the corresponding homogeneous equation L[y] = 0.
- (b) Find a particular solution of the inhomogeneous equation given above.
- (c) What is the general solution of the inhomogeneous equation given above?
- 5. Consider the Legendre equation [20 points]

$$(1-x^2)y'' - 2xy' + \alpha(\alpha+1)y = 0.$$

- (a) Determine the radii of convergence of the series solutions about x = 0 for the Legendre equation.
- (b) Show that the series solutions of the Legendre equation become polynomials of degree ℓ if α is equal to the integer ℓ .

The Legendre polynomial $P_{\ell}(x)$ of order ℓ (with ℓ being an integer) is defined as the polynomial solution of the Legendre equation above with $\alpha = \ell$ that also satisfies the condition $P_{\ell}(1) = 1$.

Furthermore, the Legendre polynomials satisfy the following orthogonality property:

$$\int_{-1}^{1} P_{\ell}(x) P_{\ell'}(x) dx = \frac{2}{2\ell+1} \delta_{\ell\ell'}.$$

(c) A polynomial of degree n, say f(x), defined on the interval $-1 \le x \le 1$ can be expressed as

$$f(x) = \sum_{\ell=0}^{n} c_{\ell} P_{\ell}(x).$$

Find the expansion coefficients c_{ℓ} for $f(x) = 3x^2 + x - 1$.