國立臺灣大學95學年度碩士班招生考試試題

題號: 73 科目:無機化學

典 / 頁之第 全 頁

1. Use the Born-Haber cycle and following data to calculate the enthalpy of formation of KBr. The first ionization energy of $K_{(g)}$ is 418.8 kJ mol⁻¹. The bond dissociation energy of Br_{2 (g)} giving 2 Br is 380.4 kJ mol⁻¹. The sublimation energy of $K_{(s)}$ is 81.3 kJ mol⁻¹. The evaporization energy of Br_{2(l)} is 29.8 kJ mol⁻¹. The electron affinity energy of Br $_{(g)}$ is -324.7 kJ mol⁻¹. The lattice energy of KBr is -661.8 kJ mol⁻¹. 10%

- 2. Give Lewis dot structures and sketch the shapes of the following ion or compounds: (a) ClO_2 (b) POF_3 (c) P_4O_6 (d) SOF_4 10%
- 3. Sketch all isomers of the following metal complexes. Indicate clearly each pair of enentiomers if any. ('en' is ethylenediamine and 'dien' is diethylenetriamine NH₂C₂H₄NHC₂H₄NH₂, a tridentate ligand.) (a) [Pt(en)₂Cl₂]²⁺ (b) [Co(NH₃)₂(H₂O)₂BrCl]⁺ (c) [Re(dien)Br₂Cl] 10%
- 4. The Rydberg constant R_H for hydrogen is 1.097×10^7 m⁻¹ and the Planck constant h = 6.636×10^{-34} J s. Determine the energies and wavelengths of two visible bands (for the transition from n = 3 and 4 to n = 2) in the atomic spectrum of hydrogen. 10%
- Calculate the exact proton ion concentration [H⁺] for a solution prepared by adding 1.0 × 10⁻⁷ mole of HNO₃ into 1.00 L of water. (You must show your calculation). 10%
- 6. On the basis of 18-electron (EAN) rule, determine the expected charge x, y and z on the following organometallic compounds: (a) [Co(CO)₃]^x
 (b) [(CO)₃Ni-Co(CO)₃]^y (c) [(η ⁵-C₅H₅) Fe(CO)₂]^z
 10%
- 7. What is the hybridization for the central carbon atom of CO_2 , sketch the two simple bonding π -molecular orbital of CO_2 . 10%
- 8. The five d orbitals are separated into two groups of eg and t2g by the presence of an octahedral field created by six ligands. (a) Draw an energy diagram indicating which d orbitals are of eg and t2g (b) Sketch the diagram for strong and weak field for complex ML6 with the metal in d⁴ configuration. (c) Draw the energy diagram for the five d orbitals in a square plane d⁸ complex ML4. 14%
- 9. Give the point group of the following compounds: (a) CH₂Cl₂ (b) [trans-Cr(H₂O)₂(NH₃)₄]³⁺ (c) PF₅ 6%
- 10. Explain why diatomic oxygen molecule O₂ is a paramagnetic molecule using molecular orbital theory and compare the relative magnitude of bond dissociation energies for O₂⁻, O₂ and O₂⁺. 10%