國立臺灣大學95學年度碩士班招生考試試題

題號: 267 科目:工程數學(G)

題號:267 頁之第 頁

1. (35%) Consider a mass m_i suspended vertically from a rigid support by a weightless spring with a second mass m₂ suspended from the first mass by means of a second weightless spring as shown in the figure 1. Let's treat the two masses as point masses, and assume that the two springs obey Hooke's law with spring constants k_1 and k_2 , respectively.

(i) Derive the equations governing the displacements for the two masses, $x_1(t)$ and $x_2(t)$, using Newton's second law with negligible air resistance. Here t denotes the time. The result should be

$$m_{1} \frac{d^{2}x_{1}}{dt^{2}} = -k_{1}x_{1}(t) + k_{2}[x_{2}(t) - x_{1}(t)],$$

$$m_{2} \frac{d^{2}x_{2}}{dt^{2}} = -k_{2}[x_{2}(t) - x_{1}(t)].$$
(10%)

- (ii) Solve the equations for $x_1(t)$ and $x_2(t)$ in (i) with $m_1 = m_2 = 1$, $k_1 = 5$, $k_2 = 6$, subject to $x_1 = 2$, $\frac{dx_1}{dt} = 5$, $x_2 = -10$, $\frac{dx_2}{dt} = 1$ at t = 0. Calculate the speeds of the two masses. (15%)
- (iii) How do we modify the equations in (i) if an external force F(t) is applied to mass m_2 along the direction of x_2 and the drag associated with the air resistance is included? Assume that the drag on the mass is proportional to its velocity but in opposite direction.

Figure 1

full-rank $(m \times n)$ real-valued matrix $\operatorname{Range}(\mathbf{A}) = \left\{ \mathbf{y} \in R^m : \exists \mathbf{x} \in R^n \ni \mathbf{y} = \mathbf{A}\mathbf{x} \right\} \quad \text{and} \quad \operatorname{Ker}(\mathbf{A}^T) = \left\{ \mathbf{y} \in R^m : \mathbf{A}^T\mathbf{y} = \mathbf{0} \right\} \quad \text{where} \quad \mathbf{A}^T$ transpose of A, and R^m is the m-dimensional vector space of real numbers. Show that

- (i) Any vector in \mathbb{R}^m can be expressed as a sum of a vector in Range(A) and a vector in $\operatorname{Ker}(\mathbf{A})$. (10%)
- (ii) Range(A) \cap Ker(A) = $\{0\}$. (10%)
- (iii) Either the solution of Ax = y exists for all $y \in \mathbb{R}^m$, or the problem $A^Ty = 0$ has non-zero solutions. (10%)

3. (35%)

(i) (a) Determine the regions where the following partial differential equation is of elliptic, parabolic, or hyperbolic type. (6%)

$$u_{xx} + yu_{yy} = 0$$

- (b) Obtain its characteristics and its canonical form for each region in (a). (9%)
- (ii) Solve the partial differential equation

$$u_{tt} - u_{xx} = 0$$
, $(0 < x < \infty)$,

subject to the conditions

$$u(0,t) = H(t) \exp(-t), \ u(x,0) = u_t(x,0) = 0,$$

where H(t) is the Heaviside unit step function. (20%)

試題隨卷繳回