國立臺灣大學95學年度碩士班招生考試試題

科目:近代物理學(B)

題號: 425

題號: 425

共 2 頁之第 / 頁

Problem 1(Photoelectron)

Blue light of wavelength 300nm and intensity 0.5 W/m² is directed at a material with work function of 2.7 eV.

- (1) Find the maximum kinetic energy (in eV) of the photoelectrons, (7%)
- (2) If the quantum efficiency is 1% (meaning 1% of the incident photons produce photoelectrons), how many photoelectrons are emitted per second if the semiconductor surface has an area of 2cm? (8%)

Problem 2 (Quantum mechanics) (10%)

Write down the operators associated with the following observable quantities in quantum mechanics.

- 1. Position, x
- 2. Linear momentum, p
- 3. Kinetic energy, KE
- 4. Total energy, E
- 5. Hamiltonian, H. (assuming the potential energy is U(x))

Problem 3 (10%)

- (a) For a hydrogen atom, the wave function can be assumed in the form of $\psi(r,\theta,\phi) = R(r)\Theta(\theta)\Phi(\phi)$ and the Schrödinger equation can be simplified with the method of separation of variables. Please derive the ground-state electron energy E_1 that corresponds to n (principal quantum number) = 1 and l (orbital quantum number) = 0.
- (b) The wave function of a 1s electron is $\psi = \frac{e^{-r/a_0}}{\sqrt{\pi a_0^{3/2}}}$. Please find the average

value of 1/r for an electron in the hydrogen atom.

Problem 4 (15%)

- (a) The total potential energy in an ionic crystal is given by the equation: $U_{total} = -\frac{\alpha e^2}{4\pi\varepsilon_0 r} + \frac{B}{r^n}.$ Please show graphically the potential energy of this equation and explain the origin of these two terms.
- (b) Please calculate the value of the constant n for the NaCl molecule. (The binding energy of this molecule is 7.95 eV/molecule. The equilibrium distance between Na⁺ and Cl⁻ ions is 2.8 Å and the Madelung constant for the NaCl crystal is $\alpha = 1.75$.)

題號: 425

國立臺灣大學95學年度碩士班招生考試試題

科目:近代物理學(B)

題號: 425

共 2 頁之第 2 頁

Problem 5

(15%) Please draw the energy band diagrams of a semiconductor p-n junction diode at (i) no bias, (ii) reverse bias (iii) forward bias, you need to include the conduction band, valance band, and Fermi level in your diagrams and put p side on the left.

Problem 6

(10%) What is Fermi energy?

Problem 7

- (a) (18%) For the following circuit biased at constant voltages, what are the base current, collector current and collector voltage?, assuming β =100, and base-emitter voltage of the transistor Vbe = 0.7V.
- (b) (7%) From (a), please draw the small signal model using the simplified hybrid- π model.

試題隨卷繳回