科目:電子學(丁)

題號:432

共 3 頁之第 1 頁

- 1. Fig.1 shows the schematic of an instrumentation amplifier with $R_2 = R_3 = R_4 = 100$ k Ω , and $2R_1 = 10$ k Ω . All Ops are ideal. Please answer the following questions.
 - (a) difference-mode gan; (12 pts)
 - (b) common-mode gain; (12 pts)
 - (c) CMRR. (10 pts)

Fig.1

- 2. Assume all the transistors in Fig.2 have the same characteristics. If $\beta = 200$, $V_A = 100$ V, T = 290K, $V_{cc} = 5$ V, $R_1 = 10$ k Ω and $R_2 = 11$ k Ω , please solve the following questions. (Note: no points will be given if the problem-solving procedures are not shown)
 - (a) common-mode voltage gain (A_{cm}); (5 pts)
 - (b) differential voltage gain (A_d) ; (5 pts)
 - (c) CMRR; (3 pts)
 - (d) Differential input resistance (R_{id}) . (5 pts)

Fig.2

國立臺灣大學95學年度碩士班招生考試試題

科目:電子學(丁)

題號: 432

題號: 432

共 3 頁之第 2 頁

3. Assume that the two transistors (Q₁ and Q₂) in Fig.3 are operating in the saturation region with different g_m (g_{m1}, g_{m2}) and r₀ (r₀₁, r₀₂). Please find the following circuit characteristics. The body effect can be neglected for simplicity but the transistor output resistance (r₀) needs to be included in the analysis.

- (a) Input resistance (Rin); (5 pts)
- (b) Output resistance (Rout); (5 pts)
- (c) Small-signal open-circuit voltage gain (v_o/v_{in}). (5pts)

- 4. For the circuit below (see Fig.4), OP_I is an ideal opamp, V_I and V_2 are ideal DC voltage sources, all PMOS transistors have the same size of $(W/L)_P$, and all NMOS transistors are the same with size of $(W/L)_N$. Assume the drain voltages of transistors P_5 and N_3 are biased properly. The threshold voltages of PMOS and NMOS are V_{Ip} and V_{In} , respectively. Assume $(W/L)_P=2(W/L)_N=(W/L)$, $|V_{Ip}|=V_{In}=V_I$, and $k_n'=2k_p'=k$ $(k_n'=\mu_nC_{ox})$ and $k_p'=\mu_pC_{ox}$. Ignore the channel-length modulation and body effect.
- (a) If $R_a=R_b=0$, derive an equation for the drain current (I_l) of transistor N_l in terms of the circuit and device parameters. (4 pts)
- (b) Continue from (1), if V_1 =4V, V_2 =1V, R_1 =3k Ω , (W/L)=200, V_i =0.5V, k=100 μ A/V², calculate the value of I_1 . (2 pts)
- (c) If the circuit output operates like a class-AB stage, explain the purpose and operation of transistors N_2 , P_2 , and resistors R_a , R_b . (3 pts)
- (d) If $R_a = R_b = R = 200\Omega$, and the other parameters are the same as in (2), calculate the maximum current flowing through the transistor P_I . (4 pts)

國立臺灣大學95學年度碩士班招生考試試題

題號: 432 科目:電子學(丁)

題號:432

頁之第 3.頁

5. For the circuit below (see Fig.5), $P_1=P_2$, $P_3=P_4$, and $N_1=N_2$, $N_3=N_4$. The size of transistor N_3 is N times of N_1 . Let $k_n = 100 \mu \text{A/V}^2$, $k_n = 40 \mu \text{A/V}^2$, $C_{ox} = 5 \text{fF/} \mu \text{m}^2$, $|V_{tp}|=V_{tn}=1$ V. Ignore the body effect, but consider the channel-length modulation effect. The transistor Early voltages (V_A) for P_1 , P_3 , N_1 and N_3 are 10V, 250V, 50V, and 50V, respectively. The common-mode feedback network is not shown for simplicity. Assume the circuit is properly biased. Express the calculated gain in dB for the following questions.

- (a) If I_A is 0 and N is 1, calculate the DC gain $(A_v = (V_{op} V_{on})/(V_{ip} V_{in}))$ and the gain-bandwidth product (GBW) of this circuit. (3 pts)
- (b) If N is changed to 5, while I_A is still 0, what are the DC gain (A_v) and the GBW? (3 pts)
- (c) Compare the answers you get in (1) and (2), explain what happens when N is changed from 1 to 5, while IA is 0? (3 pts)
- (d) If I_A is 0.375mA and N is 5, what are the DC gain (A_v) and the GBW? (3 pts)
- (e) Where is the location (which node) of the non-dominant pole? Estimate the non-dominant pole frequency for $I_A=0.375$ mA and N=5. (4 pts)
- (f) If I_A is increased and is close to 0.5mA, what will happen to the DC gain (A_v) and the phase margin of the circuit (improve or degrade)? You must state your reasons. (4 pts)

Fig. 5

試題隨卷繳回