國立臺灣大學96學年度碩士班招生考試試題

題號: 222 科目: 工程數學(B)

題號:222

共 2 頁之第 / 頁

1. Consider the real linear vector space, V, which consists of all real-coefficient polynomials in t of degree ≤ 2 . Answer the following questions.

- (1) (3%) What is the dimension of V?
- (2) (3%) Find the components of the vector $k(t) = 1 2t + t^2$ with respect to the f-basis $\{f_1(t) = t^2, f_2(t) = 2 + t, f_3(t) = t 2t^2\}$ for V. Denote it as $\{k\}_f$.
- (3) (4%) Find the transformation matrix (P) from the f-basis to the standard basis $\{e_1(t) = 1, e_2(t) = t, e_3(t) = t^2\}$ for V, that is, $(k)_e = P(k)_f$, where $(k)_e$ is the coordinates of the vector k(t) with respect to the standard basis.
- 2. (15%) Consider the initial-value problem:

$$\begin{cases} \frac{dx}{dt} = x - y \\ \frac{d^2y}{dt^2} = x - y + \frac{dy}{dt} \end{cases}$$
 with $x(0) = 0$, $y(0) = 1$, $\frac{dy}{dt}(0) = 0$.

Solve the problem in use of the method of Laplace transform.

3. (15%) Find the general solution of the following ordinary differential equation

$$x\frac{d^2y}{dx^2} + (2x^2 - 3)\frac{dy}{dx} + (x^3 - 2x + 3x^{-1})y = x^6$$
 for $x > 0$

by performing the change of variables y(x) = xU(t) and $x = \sqrt{t}$.

4. For each of the following Fourier series expansion:

$$f_{l}(x) = x = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin nx \quad \text{for } -\pi < x < \pi,$$

$$f_{ll}(x) = 1 = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin \left[(2n-1)\frac{x}{2} \right] \quad \text{for } 0 < x < 2\pi;$$

$$f_{ll}(x) = x = k - \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^{2}} \cos \left[(2n-1)\frac{x}{2} \right] \quad \text{for } 0 \le x \le 2\pi$$

- (1) (3%) What is the numerical value of $\int_0^{2\pi} f_{uv}(x) \cos(65x/2) dx$?
- (2) (3%) What is the numerical value of k in $f_{ii}(x)$?
- (3) (3%) What are the numerical values of each series at $x = \pi/3$, π , and 12.5π ? (9 answers required)
- (4) (3%) Find the Fourier series for |x|, $-2\pi < x < 2\pi$.

(5) (3%) Does
$$\int x dx = \frac{x^2}{2} = 2 \sum_{n=1}^{\infty} (-1)^n n^2 (\cos nx - 1); -\pi < x < \pi$$
?

Does
$$\frac{dx}{dx} = 1 = 2\sum_{n=1}^{\infty} \cos nx$$
; $-\pi < x < \pi$?

Give reasons why you answered "yes" or "no" to these questions.

5. Consider the following 1-dimensional heat equation:

$$\frac{\partial^2 u}{\partial x^2} = u + \frac{\partial u}{\partial t}$$
 for $0 < x < 2$, $t > 0$

with initial condition $u(x,0) = \sin \frac{\pi x}{4}$, $0 \le x \le 2$.

(1) (4%) For $t \ge 0$, the wire temperature is kept zero at x = 0 and the wire is insulated at x = 2. Write down the mathematical form of these boundary conditions.

國立臺灣大學96學年度碩士班招生考試試題

題號: 222 科目: 工程數學(B)

題號:222 - 五 頁之第 2 頁

(2) (4%) Following (1), use separation of variables on this heat equation to obtain two ordinary differential equations for X(x) and T(t), and the boundary conditions for X(x).

- (3) (4%) Following (2), find all non-trivial solutions of X(x).
- (4) (3%) Which, if any, of the equations given below is a solution to the given heat equation with the given boundary conditions in part (1). (Justification of your answer is required to get credit.)

(i)
$$u(x,t) = e^{(-1-\frac{\pi^2}{16})t} \sin\frac{\pi x}{4}$$
 (ii) $u(x,t) = e^{-\frac{\pi^2 t}{16}} \sin\frac{\pi x}{4}$

(iii)
$$u(x,t) = e^{\frac{-\pi^2 t}{16}} \cos \pi x$$

(iv)
$$u(x,t) = \sum_{n=1}^{\infty} b_n e^{\frac{-n^2 \pi^2 t}{16}} \sin \frac{n \pi x}{4}$$
, $b_n = \int_0^2 \sin(\frac{\pi x}{4}) \sin(\frac{n \pi x}{2}) dx$

- 6. Write down the answers to the following questions. (Derivations are not required.)
 - (1) (3%) Evaluate the line integral $\oint_C \underline{\mathbf{F}} \cdot \underline{\mathbf{n}} \, d\ell$ of a 2-D vector function $\underline{\mathbf{F}} = (\frac{x}{x^2 + y^2}) \underline{\mathbf{i}} + (\frac{y}{x^2 + y^2}) \underline{\mathbf{j}}$ over a closed path C defined by an ellipse $9x^2 + 4y^2 = 1$. ($\underline{\mathbf{n}}$ denotes the unit normal vector pointing outwardly along the ellipse.)
 - (2) (3%) Let $\phi(x, y, z) = xyz$ be a scalar function. Evaluate the surface integral $\iint_S (\nabla \phi) \cdot \mathbf{n} \, dS$ over the bounding surface S of a cube defined by $-1 \le x \le 1$, $-1 \le y \le 1$, $-1 \le z \le 1$. (\mathbf{n} denotes the unit normal vector pointing outwardly along the surface of the cube.)
 - (3) (3%) Let $\underline{\mathbf{F}} = (2x^2 y)\underline{\mathbf{i}} + (\cos y ye^{-y} + 4x)\underline{\mathbf{j}}$ be a 2-D vector function. Evaluate the line integral $\oint_C \underline{\mathbf{F}} \cdot d\underline{\mathbf{r}}$ along a closed path C defined by a unit circle centered at the origin.
 - (4) (3%) Let $\phi(x, y, z) = x^2 y x e^z$. Find the rate of change of $\phi(x, y, z)$ at point (1, 0, -1) along the direction $\mathbf{u} = \mathbf{i} 2\mathbf{j} + \mathbf{k}$.
 - (5) (3%) Let $\phi(x, y, z)$ and $\psi(x, y, z)$ be two continuous and differentiable scalar functions, then $\nabla \cdot (\nabla \phi \times \nabla \psi) = 0$. True or False?
- 7. Let z = x + iy denote the complex variable, $\overline{z} = x iy$ be the complex conjugate of z, and f(z) a complex function. Answer the following questions. (Derivations are not required.)
 - (1) (3%) $f(z) = \overline{z}/z$ is an analytic function on the whole z-plane excluding the origin. True or False?
 - (2) (3%) Find the residue of the complex function $f(z) = z(z+i)e^{1/z^2}$ at z=0.
 - (3) (3%) Let the Laurent series expansion of $f(z) = (z+3i)/[z(z^2+9)]$ about z=3i be denoted by $\sum_{n=-\infty}^{n=+\infty} c_n (z-3i)^n$ which is a convergent series within the annulus 0 < |z-3i| < 3. Find the sum of the

coefficients c_n of all negative-power terms; i.e., evaluate $\sum_{n=-\infty}^{n=-1} c_n = ?$

- (4) (3%) Evaluate the complex integral $\oint_C [(\sin z)/(z-i)^2] dz$ over C: |z-i|=2.
- (5) (3%) Evaluate the real integral $\int_0^{2\pi} e^{(\cos\theta)} \cos(\sin\theta) d\theta$.

: Consider first the complex integral $\oint_C (e^z/z) dz$ along a unit circle C centered at origin.

試題隨卷繳回