題號:242

科目:控制系統(B)

題號:242

共 工 頁之第 / 頁

總分 100 分,請依序作答,並標明題號

1. (15%)

Consider the inverted pendulum system as shown in Fig.1. Assume that the mass of the inverted pendulum is m and the center of gravity of the pendulum is located at the center of the rod. Assume that θ is small.

- (a) Please derive the mathematical models in the form of differential equations. (5%)
- (b) Please derive the mathematical models in the form of transfer functions. (5%)
- (c) Please derive the mathematical models in the form of state-space equations. (5%)

Fig. 1

2. (20%)

Consider the system shown in Fig. 2, which involves velocity feedback. Determine the values of the amplifier gain K and the velocity feedback gain K_h so that the following specifications are satisfied:

- (a) Damping ratio of the closed-loop poles is 0.5
- (b) Settling time ≤2 sec
- (c) Static velocity error constant $K_{\nu} \ge 50 \text{ sec}^{-1}$

(d)
$$0 < K_h < 1$$

Fig.2

3. (20%)

Consider the unity-feedback system which open loop transfer function is $G(s) = \frac{K}{s(s+1)^2}$.

- (a) Determine the range of K for system stability by Nyquist stability criterion (10%)
- (b) Determine the phase margin and the gain margin as K=0.5 (10%)

題號: 242 科目:控制系統(B)

題號: 242

共 2 頁之第 2 頁

4. (25%)

A control system, as shown in Fig. 3, has the control target $y_{set} = 0$, the output y(t) and the disturbance d(t).

Fig. 3

- (a) Derive the transfer function $G_D(s) = \frac{Y(s)}{D(s)}$ for the disturbance d(t), and solve the output response y(t) as $d(t) = \delta(t)$, where $\delta(t)$ is an impulse function as $\delta(t) = \begin{cases} \infty & \text{for } t = 0 \\ 0 & \text{for } t \neq 0 \end{cases}$ (7%)
- (b) Solve the output response y(t) as $d(t) = D_0 \cos \omega_0 t$ with zero initial values (8%)
- (c) Solve the PD-controller, K_R and T_V , for keeping the damping ratio $\varsigma_C = 0.707$ and the natural frequency $\omega_{0C} = 10 \, s^{-1}$ in the close-loop system, where $\varsigma = 0.1$; $\omega_0 = 2 \, s^{-1}$; $K_S = 3$; $K_d = \frac{1}{3}$. (10%)

5. (20%)

Consider the control system as $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$, $y = \mathbf{C}\mathbf{x} + \mathbf{D}u$, where

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & -1 \\ -1 & -1 & -1 \\ 1 & 0 & -1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} 0 \end{bmatrix}$$

The system uses the state feedback control u = -Kx. Please solve the controller K for the desired closed-loop poles at s=-5, -10, -15.

試題隨卷繳回