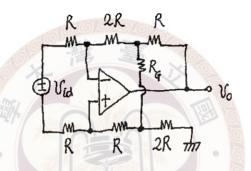
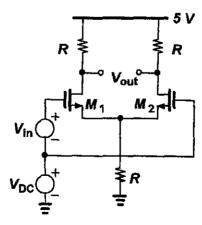

國立臺灣大學96學年度碩士班招生考試試題

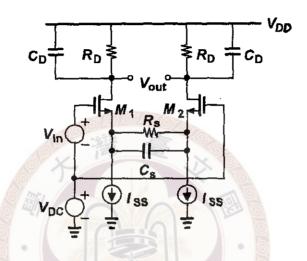

題號:414 科目:電子學(乙)

1. The circuit shown on the right-hand side is a single OPAMP difference amplifier. Assume the OPAMP is ideal.

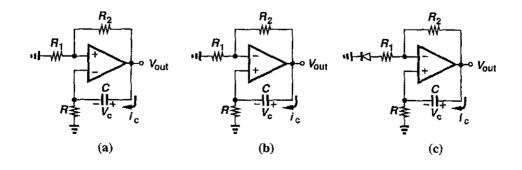

- (a) Find the common mode gain and the common mode input resistance of the difference amplifier. (9%)
- (b) Find the differential gain and CMRR (common mode rejection ratio) of the difference amplifier. (9%)

2. Assume the OPAMP in the following circuit is ideal. Find the voltage gain of the amplifier, vo/vid. (15%)

- 3. The following circuit is a differential amplifier, where the current source is replaced by a fixed resistor R. Neglect channel-length modulation and body effect in all transistors. Note that $(W/L)_{1,2}=80/1$, R=1 $K\Omega$, $\mu_n C_{ox}=50~\mu\text{A/V}^2$ and $V_{tn}=1$ V. Additionally, V_{DC} is equal to 2.5V and V_{tn} is a differential AC signal.
- (a) (5%) What is the differential gain of this amplifier ($=A_v = V_{out}/V_{in}$)?
- (b) (12%) Derive (dA_v/dV_{DC}) (Take derivative of A_v with respect to V_{DC}), where V_{DC} is around 2.5V.
- (c) (4%) If the 1-K Ω resistor is replaced by an ideal current source, what's the major advantage of the modified circuit can obtain?


國立臺灣大學96學年度碩士班招生考試試題

題號:414 科目:電子學(乙)


共 2 頁之第

4. Now, the frequency response of the differential pair with source degeneration can be analyzed. Neglect channel-length modulation, body effect and parasitic capacitance in all transistors. Assume both M1 and M2 are in saturation region and their transconductance is equal to g_m. Note that g_mR_s=1 and R_DC_D=R_sC_s.

- (a) (9 %) Derive $V_{out}(s)/V_{in}(s)$ and calculate -3dB frequency.
- (b) (4%) What is the 3-dB BW improvement compared with the same circuit whose C_s is removed?

- 5. Consider the circuit shown below. The opamp is assumed ideal (i.e., infinite gain, infinite bandwidth, infinite driving force, infinite input impedance, and zero output impedance) and with symmetric dual supplies [the saturated (maximum) output of the opamp is $+V_{CC}$ or $-V_{CC}$]. At $t=0^{\circ}$, $V_{C}=+V_{CC}$ and $i_{C}=0$.
- Sketch V_{out} , V', and V' as a function of time and mark important points, starting from t = 0. (V' and V'(i) represent the plus and minus input nodes of the opamp, respectively.) Does the circuit in (a) oscillate? If so, what is the period of oscillation? (8%)
- Now the input polarity of the opamp is flipped as illustrated in (b). Repeat part (i). (8%) (ii)
- (iii) Is the circuit in (b) a positive or negative feedback? Explain your answer. (9%)
- (iv) Now an ideal diode is inserted in series with R_1 as shown in (c). Repeat part (i). (8%)

試題隨卷繳回