國立臺灣大學96學年度碩士班招生考試試題

題號:420 國立臺灣大學96學年科目:數學

共 1 頁之第 全 頁

※ 注意:務必依照題號順序作答。

(1) (10%) Let matrices
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 3 & 0 & 0 \\ 0 & -4 & 5 & 0 \\ 0 & 0 & -6 & 7 \end{bmatrix}$$
, $I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ and $B = (I + A)^{-1}(I - A)$,

calculate the matrix $(I+B)^{-1}$.

- (2) (10%) If the rank of the set of vectors $\mathbf{b}_1 = (0, 1, -1)$, $\mathbf{b}_2 = (a, 2, 1)$, $\mathbf{b}_3 = (b, 1, 0)$ is equal to the rank of the set of vectors $\mathbf{a}_1 = (1, 2, -3)$, $\mathbf{a}_2 = (3, 0, 1)$, $\mathbf{a}_3 = (9, 6, -7)$ and \mathbf{b}_3 can be represented as the linear combination of \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 , find the values of \mathbf{a} , \mathbf{b} .
- (3) (10%) Given 3×3 matrix A and four vectors $\mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 5 \\ 3 \\ 2 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$, $\mathbf{d} = \begin{bmatrix} -2 \\ 2 \\ -3 \end{bmatrix}$ satisfying $A\mathbf{a} = \mathbf{b}$, $A\mathbf{b} = \mathbf{c}$, $A\mathbf{c} = \mathbf{d}$, find $A\mathbf{d}$.
- (4) (20%) (a) If a₀ = 2, a₁ = 3, and a_{n+1} = 3a_n 2a_{n-1}, for all n ≥ 1, use generating function method to find the formula for a_n.
 (b) Redo part (a) using Eigen value method.
- (5) (10%) Suppose that \Re is an equivalence relation on $\{1, 2, 3, 4, 5\}$ and the equivalence classes induced by \Re are $\{1, 5\}$, $\{2, 4\}$ and $\{3\}$. What is the value of $|\Re|$, i.e., the size of \Re ?
- (6) (20%) Suppose that $(K, \cdot, +)$ is a Boolean algebra. An element e (or z) of K is called the *identity* (or zero) if $e \cdot a = a \cdot e = a$ (or z + a = a + z = a) for all $a \in K$. Prove that the identity and zero of K are unique.
- (7) (20%) Suppose that G = (V, E) is a connected planar graph. It is known that |V| |E| + r = 2 holds for any planar drawing of G, where r is the number of regions. Assume r > 1. Prove that $|E| \le 3 \times |V| 6$ also holds for G. (Hints: every region is bounded by at least three edges and every edge is shared by at most two regions.)

試題隨卷繳回