題號: 429

科目:電子學(甲)

題號: 429

共 2 頁之第 1 頁

*下列題目請在試卷內的「非選擇題作答區」作答。

- 1. (40%) The circuit in Fig. 1-1 is a fully differential op amp with $V_{ln} = |V_{lp}| = 1$ V, $\mu_n C_{ox} = 200 \text{ }\mu\text{A/V}^2$, $\mu_p C_{ox} = 100 \text{ }\mu\text{A/V}^2$, $|V_A| = 100 \text{ V}$, $(W/L)_1 = (W/L)_2 = (W/L)_3 = (W/L)_4 = (W/L)_7 = (W/L)_8 = (W/L)_9 = (W/L)_{10} = 2$, and $(W/L)_5 = (W/L)_6 = (W/L)_{11} = 4$.
 - (1) (8%) Find the input common-mode range (ICMR).
 - (2) (8%) Find the output swing.

Note that the op amp can also be presented as the simplified model in Fig. 1-2.

- (3) (8%) Find the transconductance G_m .
- (4) (8%) Find the output resistance R_o .
- (5) (8%) Find the differential-mode voltage gain $A_v = v_o/v_i$.

[Hint: channel length modulation can be neglected in the dc analysis]

- 2. (20%) Consider the circuit in Fig. 2 with $v_I = 2 + 0.01 \times cos(100t)$ V and output saturation levels $L_+ = 5$ V and $L_- = -5$ V.
 - (1) (10%) Given that $R_1 = 20 \text{ k}\Omega$, $R_2 = 30 \text{ k}\Omega$, $R_3 = 40 \text{ k}\Omega$ and $R_4 = 10 \text{ k}\Omega$, find the output voltage v_O (including the dc and the ac components).
 - (2) (10%) Given that $R_1 = 20 \text{ k}\Omega$, $R_2 = 30 \text{ k}\Omega$, $R_3 = 10 \text{ k}\Omega$ and $R_4 = 40 \text{ k}\Omega$, find the output voltage v_0 (including the dc and the ac components).

見背面

題號: 429

科目:電子學(甲)

題號: 429

頁之第 乙 共し

- 3. (20%) Consider the logic-circuits in Fig. 3-1 and 3-2.
 - (1) (10%) The circuit in Fig. 3-1 is a dynamic logic gate, which is in the precharge phase when $\varphi = 0$ and in the evaluation phase when $\varphi = V_{DD}$. Please express the logic function Y.
 - (2) (5%) The one in Fig. 3-2 is a CMOS logic circuit. Express the logic function \overline{Y} .
 - (3) (5%) For the circuit in Fig. 3-2, the aspect ratios of the MOSFETs are provided. If we want to have the worst-case t_{PLH} identical to the worst-case t_{PLH} , what is the required ratio of $\mu_n C_{ox}$:

- (20%) The circuit in Fig. 4 is a 4-bit DRAM where C_{SI} - C_{S4} are used as the memory cells and C_{DI} - C_{D2} 4. are the dummy cells. When $\varphi = V_{DD}$, the circuit is in the precharge phase. By selecting the associated word line with a high voltage of V_{DD} , the READ and WRITE operations can be performed when $\varphi = 0$ V. Note that V_{DD} is 5 V and the threshold voltage of the MOSFETs is 1 V. Assume that capacitors in the cells are identical, and the equivalent capacitance of each one of the bit lines is 100 times as large as the cell capacitors.
 - (1) (5%) If one would like to WRITE logic "1" into cell 1, what is the voltage across C_{SI} ?
 - (2) (5%) If one would like to WRITE logic "1" into cell 3, what is the voltage across C_{S3} ?
 - (3) (5%) If logic "1" is stored in cell 1, what is the voltage at B for READ operation?
 - (4) (5%) If logic "1" is stored in cell 3, what is the voltage at \overline{B} for READ operation? [Hint: Neglect the sense amplifier]

