國立臺灣大學97學年度碩士班招生考試試題

題號: 50 科目: 微分方程

題號: 50

共 | 頁之第 | 頁

1. (20 pts) Show that the difference of any two solutions of the equation

$$\frac{d^2}{dt^2}y + 2\frac{d}{dt}y + 4y = g(t)$$

approaches to zero as t goes to infinity.

- # 2. (20 pts) Find two linearly independent solutions of $t^2 \frac{d^2}{dt^2} y = 2y$ of the form $y(t) = t^r$. Using these solutions, find the general solution of $t^2 \frac{d^2}{dt^2} y 2y = t^2$.
- # 3. (20 pts) Solve the initial-value problem as follows:

$$\frac{d^2}{dt^2}y - 2\frac{d}{dt}y + y = \begin{cases} 0 & \text{if } 0 \le t < 1, \\ t & \text{if } 1 \le t < 2, \\ 0 & \text{if } 2 \le t < \infty, \end{cases}$$
 (1)

$$y(0) = 0, \frac{d}{dt} y(0) = 1.$$

- # 4. (20 pts) Let A be a $n \times n$ symmetric and nonconstant matrix. Give a condition on A such that all solutions of the differential equation $\dot{x} = Ax$ must tend to zero as t goes to infinity. Prove or disprove your answer.
- # 5. (20 pts) Consider the following system of differential equations

$$\begin{cases}
\frac{d}{dt}S = -SI + 2, \\
\frac{d}{dt}I = SI - 3I,
\end{cases}$$
(2)

Answer the following questions:

- (1) Find all equilibrium solutions of (2). (5 pts)
- (2) Are these solutions stable? (7 pts)
- (3) Are these solutions asymptotically stable? (8 pts)

Prove or disprove all your answers.