題號: 84

頁之第

1 (10%) (a) (5%) Write down the Taylor expansions of e^{-x} . What is the e^{-1} scale for the functions of e^{-k^2t} and $e^{-x^2/n}$?

(b) (5 β) Draw a graph for $f(t) = t^{100}e^{-t}$ ($t \ge 0$) and explain the function behavior. What is the t when the function has a maximum?

2 (10分) Consider the dynamic system:

$$\frac{d^2x_1}{dt^2} = -(x_1 - x_2),$$

$$\frac{d^2x_2}{dt^2} = -(x_2 - x_1).$$

Write the above equation in the matrix form, and discuss the fundamental types of motion and the corresponding periods of the system? (hint: find the eigenvalues and eigenvectors of the matrix.)

3(10 \Re) Find the Fourier transform for the function $f(x) = e^{-a|x|}$, where a is real and $a > 0, -\infty < x < \infty$.

4 (10分) Solve the Laplace equation

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0$$

in $[0,\infty] \times [0,\pi]$ domain with the boundary conditions $\psi(x,0) = \psi(x,\pi) = 0$, $\psi(0,y) = 0$ $f_0(y)$, and $\psi(\infty,y)=0$. Discuss the smoothing effect of the Laplace equation in the x direction.

5 (10分) Solve the following eigenvalue and eigenvector problem.

$$\frac{d^2u}{dx^2} = -n^2u$$

with $u(0) = u(\pi)$.

6 (15分) Solve the following differential equations:

(a) Gompertz equation

$$\frac{dT}{dt} = \alpha \ln(\frac{\mu}{T})T,$$

with $T(0) = T_0$, α and μ are constants.

(b)

$$\frac{dy}{dt} + \lambda y = e^{it},$$

with $y(0) = y_0$.

(c)

$$\frac{d^2u}{dx^2} = \left\{ \begin{array}{ll} 2, & \text{if} & -1 \le x < 0; \\ -2, & \text{if} & 1 \ge x > 0. \end{array} \right.$$

with
$$u(-1) = u(1) = 0$$
.

7 (15分) Express the following vector operations in the Cartesian components, and also state whether the yield of vector operation is a scalar or a vector. (Boldface V is a

(a)
$$\nabla \cdot \mathbf{V}$$
, (b) $\nabla \times \mathbf{V}$, (c) $\nabla \phi$, (d) $\nabla^2 \phi$, (e) $\mathbf{V} \cdot \nabla \phi$.

8 (10分) State the Stokes' theorem and the Gauss' theorem in equations and discuss the meanings.

9 (10分) Prove the Leibniz integration equation

$$\frac{d}{dx}\int_{a(x)}^{b(x)}f(x,t)dt=\int_{a(x)}^{b(x)}\frac{\partial f(x,t)}{\partial x}dt+f\left(x,b(x)\right)\frac{db(x)}{dx}-f\left(x,a(x)\right)\frac{da(x)}{dx}.$$

