國立臺灣大學97學年度碩士班招生考試試題

科目:流體力學(C)

題號:219

題號:219

共 3 頁之第 1 頁

Problem 1:

A solid cylinder of diameter d and height d is slowly pushed at constant speed U into a hollow hemispheric tank of radius d, filled with water. The overflow is received in a hollow cone of diameter d and height d, which is initially dry. If d and U are known, find the time evolution of the water depth h(t) inside the cone.

Fig. 2. Fish cage subject to water current. Left: prototype; right: model (Source: THL)

Problem 2. Model tests are performed to find the tension force F needed to anchor a fish cage of diameter D subject to a water current speed V in water of depth H. Water has density ρ and viscosity μ .

- a) Using the MLT system, give the units of quantities F, D, V, H, ρ and μ .
- b) We expect the tension force F to depend on the other variables according to

$$F = f(D, V, H, \rho, \mu)$$

Choosing D, V and ρ as repeating variables, find a corresponding non-dimensional relationship.

- c) If we perform laboratory experiments at scale $D_m/D=1/20$, using water, how should we choose the depth scale H_m/H and velocity scale V_m/V ?
- d) Using these scales, the tension force measured in the laboratory experiments is $F_m = 100$ N. Find the tension force F in the prototype under similar conditions.
- e) Give another example of good choice for the repeating variables, and an example of bad choice for the repeating variables.

國立臺灣大學97學年度碩士班招生考試試題

科目:流體力學(C)

題號:219

題號:219

共 3 頁之第 2 頁

Fig. 3

Problem 3: A water cannon connected to a pressure vessel is mounted on a frictionless carriage, as shown on the figure above. The diameters of the piston chamber and nozzle are D=1 m and d=2 cm. The frictionless piston separating air and water has speed U=1 cm/s. The carriage is linked by a cable to a rigid wall.

- a) Find the water velocity V at the nozzle (= mouth) of the cannon.
- b) Find the tension force F in the cable.
- c) Find the air pressure p at the gage.

Fig. 4

Problem 4: An open-channel flow of unknown density ρ' enters a lake of depth H, and plunges along the lake bottom as a density current (underflow) underneath a layer of clear water of density $\rho = 1000 \text{ kg/m}^3$ and velocity V = 0. We measure $z_i = 6 \text{ m}$, $h_i = 1 \text{ m}$, $V_i = 2 \text{ m/s}$, and $h_2 = 2 \text{ m}$. Assume steady flow and neglect mixing and energy dissipation.

- a) Draw the streamlines of the current.
- b) Find the lake depth H.
- c) Find the underflow velocity V_2 .
- d) Find the density of the inflow ρ' .

題號:219

國立臺灣大學97學年度碩士班招生考試試題

科目:流體力學(C)

題號:219

共 3 頁之第 3 頁

Fig. 5. Typhoon flow. Left: satellite photo of the 1996 Herb Typhoon (source: NOAA). Right: velocity field from lab experiments (source: NTU Institute of Mechanics/Huang S.-Y.)

Problem 5: In polar coordinates, the 2D velocity field due to a typhoon is described by

$$v_r = 0$$
, $v_\theta = \frac{A}{r} + Br$

- a) Express the velocity field in Cartesian coordinates, i.e. find u(x, y) and v(x, y).
- b) Find the divergence $\nabla \cdot \vec{V}$ (=dilation rate) and the vorticity $\nabla \times \vec{V}$ of the flow field.
- c) If possible, find the stream function $\psi(r,\theta)$ of the flow.
- d) If possible, find the potential $\phi(r,\theta)$ of the flow.