題號:231

國立臺灣大學97學年度碩士班招生考試試題

科目:工程數學(B)

題號:231

共 ン 頁之第 / 頁

※ 注意:請於試卷上依序作答,並應註明作答之大題及其題號。

1. (10%) The initial conditions $y(0) = y_0$, $y'(0) = y_1$, apply to the following differential equation: $x^2y'' - 4xy' + 4y = 0$.

For what values of y_0 and y_1 does the initial-value problem have a solution?

- 2. Consider the matrix $\mathbf{A} = \begin{bmatrix} 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.
 - (1) (6%) Determine the rank of A.
 - (2) (6%) Let B be a 4×3 matrix satisfying AB = 0. Find the maximum possible value of the rank of B.
 - (3) (6%) Find the eigenvalues and eigenvectors of A.
 - (4) (6%) Is A diagonalizable?
 - (5) (6%) Let $\mathbf{b} = [b_1, b_2, b_3, b_4]^T$. Under what conditions on \mathbf{b} (if any) does $\mathbf{A}\mathbf{x} = \mathbf{b}$ have a solution?
- 3. Let u(x,t) denote the displacement of a finite string over $0 < x < \pi$ with fixed ends, $u(0,t) = u(\pi,t) = 0$. The string starts to vibrate from its initial states, u(x,0) = 0 and $u_t(x,0) = (\partial u/\partial t)_{t=0} = x$, after an external force, $F(x) = x(x-\pi)$, is applied onto it. The subsequent string displacement can be described by a 1-D inhomogeneous wave equation:

$$\frac{\partial^2 u}{\partial t^2} = 9 \frac{\partial^2 u}{\partial x^2} + F(x) \quad \text{, for } 0 < t < \infty .$$

- (1) (4%) Write u(x,t) = X(x)T(t). Use the homogeneous problem (set F(x) = 0 with the same boundary conditions) and the Sturm-Liouville theorem to determine the eigenfunction and the corresponding eigenvalue, $\phi_n(x)$ and λ_n , of the problem.
- (2) (4%) Find the eigenfunction expansion of the external force: determine the coefficients f_n 's in $F(x) = \sum_{n=1}^{\infty} f_n \phi_n(x)$.

Use (1) and (2) to find a solution for the original wave equation in the form of $u(x, t) = \sum_{n=1}^{\infty} T_n(t) \phi_n(x)$:

- (3) (4%) Determine a 2^{nd} order ODE (ordinary differential equation) that governs $T_n(t)$.
- (4) (5%) Apply the initial conditions to solve the ODE obtained in (3). Then, complete the solution to the 1-D inhomogeneous wave equation.
- 4. A periodic function f(x) is sketched below.

- (1) (2%) Write a mathematical description for the function.
- (2) (3%) Determine the Fourier series representation, $f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(\lambda_n x) + b_n \sin(\lambda_n x)$, of the function: explicitly write out a_0 , a_n , b_n , λ_n .
- (3) (3%) Determine the fundamental period, ω_0 , of the Fourier series. Sketch the amplitude spectrum of the Fourier coefficients over the frequency range of $[0, 4\omega_0]$.

國立臺灣大學97學年度碩士班招生考試試題

題號:231 科目:工程數學(B)

題號:231

共 ン 頁之第 ン 頁

- (4) (2%) What is Gibbs phenomenon?
- (5) (3%) Is Gibbs phenomenon present in the Fourier series representation for f(x) found in (2)? If yes, indicate the location where Gibbs phenomenon will be most pronounced over the range -5 < x < 5. Otherwise, explain why the current Fourier series representation is free of Gibbs phenomenon.
- 5. Write down the answers to the following questions. (Derivations are not required.)
 - (1) (3%) Evaluate the distance from the point (1, 3, 0) to the plane: $x-3y+\sqrt{6}z=3$.
 - (2) (3%) Let $\phi(x, y, z) = xyz + x^2 2y^2$ be a scalar function. Evaluate the flux of $\nabla \phi$ out of the surface of the sphere: $x^2 + y^2 + z^2 = 4$.
 - (3) (3%) Let $\underline{\mathbf{F}} = r \underline{\mathbf{e}}_r + r \cos \theta \underline{\mathbf{e}}_\theta + z \underline{\mathbf{e}}_z$ be a vector function written in the cylindrical coordinates (r, θ, z) . Evaluate $\nabla \cdot \underline{\mathbf{F}}$.
 - (4) (3%) Find the streamlines of the 2-D vector field $\mathbf{F} = \sin(2y)\mathbf{i} + \cos(x)\mathbf{j}$.
 - (5) (3%) Let $\phi(x, y)$ and $\psi(x, y)$ be two continuous and differentiable scalar functions on a simple closed curve C and throughout the interior D of C, then $\oint_C \phi(\partial \psi/\partial y) dx + \phi(\partial \psi/\partial x) dy = \iint_D \phi \nabla^2 \psi dA + \iiint_D dA$. Fill in the blank bracket [] in the above identity with proper expression.
- 6. Let z = x + iy denote the complex variable, $\bar{z} = x iy$ the complex conjugate of z, and f(z) a complex function. Answer the following questions. (Derivations are not required.)
 - (1) (3%) Find the real part of $(1-i)^{(1+i)}$ if the argument θ is restricted in $0 \le \theta < 2\pi$.
 - (2) (3%) Find the residue of the complex function $f(z) = z(z-i)\cos(1/z^2)$ at z=0.
 - (3) (3%) Let the Laurent series expansion of $f(z) = (z+i)/(z^2+4)$ about z=-2i be denoted by $\sum_{n=-\infty}^{n=+\infty} c_n (z+2i)^n$ which is a convergent series within the annulus 0 < |z+2i| < 4. Find the sum of the coefficients c_n of all negative-power terms; i.e., evaluate $\sum_{n=-\infty}^{n=-1} c_n = ?$
 - (4) (3%) Evaluate the complex integral $\oint_C [\overline{z}/(z+2i)^2] dz$ over C: |z|=1.
 - (5) (3%) Evaluate the real integral $\int_{\theta=0}^{\theta=2\pi} \frac{d\theta}{\cos\theta + \sin\theta}$