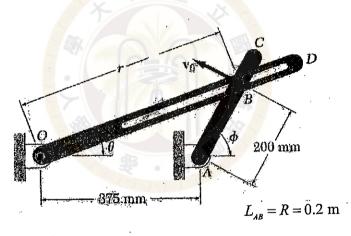
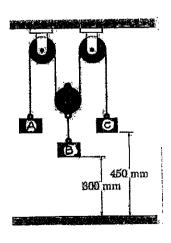
題號: 256 國立臺灣 科目: 動力學(B)

題號:256 共 **2** 頁之第 / 頁

1. (25%) Pin B is attached to the rotating arm AC and moves at a constant speed $v_0 = 2.875$ m/s. Knowing that pin B slides freely in a slot cut in arm OD, Let the length \overline{AB} be denoted by R.


(a) Show that, when arm AC rotates, at any instant angle θ can be expressed in terms of ϕ as

$$\tan \theta = \frac{R \sin \phi}{0.375 + R \cos \phi}.$$
 (1)


(b) Show that at any instant the rates \dot{r} and $\dot{\theta}$ in terms of r, θ , ϕ , and $\dot{\phi}$ are $\dot{r} = R\dot{\phi}(\cos\phi\sin\theta - \sin\phi\cos\theta) = R\dot{\phi}\sin(\theta - \phi), \qquad (2)$

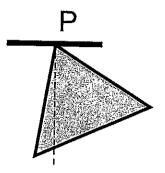
$$\dot{\theta} = \frac{R\dot{\phi}(\cos\phi\cos\theta + \sin\phi\sin\theta)}{r} = \frac{R\dot{\phi}\cos(\theta - \phi)}{r}.$$
 (3)

- (c) Determine the rates \dot{r} and $\dot{\theta}$ at the instant where $\phi = 0$.
- (d) Determine the rates \dot{r} and $\dot{\theta}$ at the instant where $\phi = 90^{\circ}$.

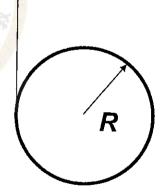
2. (25%) Referring to the following figure and knowing that blocks B and C strike the ground simultaneously and exactly 1 s after the system is released from rest. Determine m_B and m_C in terms of m_A .

題號:256

國立臺灣大學98學年度碩士班招生考試試題


科目:動力學(B)

題號:256


共 上 頁之第 2— 頁

3. (25%) Shown in the plot is an equilateral triangular plate of lateral length L with the point \mathbf{P} fixed. The pendulum is allowed to oscillate in the plane depicted under a constant gravitational field \mathbf{g} . The plate is assumed to be homogeneous and the total mass is M.

- (a) Calculate the principal moment of inertia with respect to P that is relevant to the oscillation.
- (b) For the case of small oscillation, calculate the oscillation period.

- 4. (25%) A point mass m rolls without friction down a ramp and through a vertical circular loop of radius R in a constant gravitational field g. If the particle is released from rest, find:
- (a) The minimum release height such that the particle can travel all the way around the loop.
- (b) The force exerted on the track by the particle when it is at the lowest point of the loop.

m

試題隨卷繳回