Problem 1 (20%)

A dielectric material of permittivity ε sliding freely in a cylindrical capacitor experiences a mechanical force F_e of electric origin in the axial direction, as shown in Figure Problem-1. (assuming the fringing effects at the edges negligible)

- (a) find the expression of electric field in the region of a < r < b
- (b) calculate the capacitance of such configuration in terms of the intrusion x
- (c) find the expression for Fe

Figure Problem-1

Problem 2 (30%)

In Figure Problem-2, the region z < 0 is a perfect dielectric, whereas the region z > 0 is a perfect conductor. For an incident uniform plane wave having the electric field $\overline{E}_t = E_0[\cos(wt - \beta z)\hat{x} - \sin(wt - \beta z)\hat{y}]$ where $\beta = w\sqrt{\mu\varepsilon}$,

- (a) obtain the magnetic field of the incident wave (hint: using the wave impedance η)
- (b) determine the polarization sense of the incident wave (linear/circular? right/left handed?)
- (c) write down the boundary condition at z=0 and find the expressions for the electric and magnetic fields of the reflected waves
- (d) determine the polarization sense of the reflected wave (linear/circular? right/left handed?)
- (e) find the expressions of the total (incident + reflected) electric and magnetic fields; Are they standing waves?
- (f) find the induced current density on the surface of the perfect conductor
- (g) find the Poynting vector of the incident wave
- (h) find the Poynting vector of the total fields in the perfect dielectric

Figure Problem-2

國立臺灣大學98學年度碩士班招生考試試題

科目:電磁學及電磁波

題號:410

Problem 3. (30%)

- (a) Please define and explain the Brewster Angle. (5%)
- (b) What is the polarization of the reflected wave for an elliptically polarized wave incident on a dielectric interface at the Brewster Angle? Please explain why? (10%)
- (c) Oblique incident from air onto a lossless, nonmagnetic dielectric at a certain incidence angle is observed to result in 80% power transmission when TE polarization is used and in 100% power transmission when TM polarization is tried. What are the index of refraction n of the dielectric and the angle of incidence θ ? (15%)

Problem 4. (20%)

A 2950m-long, lossless telephone line is subjected to a 24V u(t) (step) source having an internal resistance of 100Ω . The per-unit-length inductance and capacitance of the line are 1.15 μ H/m and 10 pF/m, respectively. The transmission line is terminated into a load resistance of 500Ω .

- (a) What is the lattice diagram (or bounce diagram) for calculating the transient behavior on transmission line? Please briefly describe. (5%)
- (b) Sketch the voltage and current waveforms as a function of time at the midpoint using the lattice diagram. (15%)