題號:218

國立臺灣大學99學年度碩士班招生考試試題

科目:工程數學(B)

題號: 218 共 2 頁之第 / 頁

1. (13%) Consider a system of ODE $\begin{cases} y_1' = -3y_1 + y_2 - 6e^{-2t} \\ y_2' = y_1 - 3y_2 + 2e^{-2t} \end{cases}$

Find the eigenvalues and the eigenvectors of this system. Check the orthogonality and the linear independence of the eigenvectors. Determine the fundamental matrix $\Omega(t)$ and its inverse $\Omega^{-1}(t)$. Write the general solution of the system. Determine a unique solution if $y_1(0) = 1$ and $y_2(0) = -1$.

- 2. (27%) Consider ty'' ty' y = 0 subjected to y(0) = 0 and y'(0) = 3.
 - (1) Let F(s) = L[f(t)] denote the Laplace transform of a time function f(t). Show that dF/ds = -L[tf(t)]. Determine d^nF/ds^n .
 - (2) Apply Laplace transform to solve the given ODE.
 - (3) Obtain a series solution around t = 0 for the same ODE (explain if any particular solution format is used).

3.

- (1) (8%) Assuming a function f(x) is defined as f(x) = -x $-1 \le x \le 1$, derive and plot its Fourier series and Fourier-Legendre series representations. In addition, roughly sketch the first and the tenth partial sum of both series.
- (2) (2%) In general, under what conditions a function equals its Fourier series?
- 4. Consider the one-dimensional heat conduction problem $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$ $0 < x < \infty$, t > 0 with boundary condition u(0,t) = 0 and initial condition u(x,0) = f(x).
 - (1) (8%) Derive the general solution u(x,t).
 - (2) (2%) Explain why the solution is in the integral form but not in the series form.

5.

- (1) (2%) Show Laplace's equation in polar coordinates, and briefly explain what a Dirichlet problem is.
- (2) (8%) Solve the following problem: $\nabla^2 u(r,\theta) = 0 \quad \text{for } 0 \le r \le 1, \quad -\pi \le \theta \le \pi$

$$u(1,\theta) = \theta^2$$
 for $-\pi \le \theta \le \pi$

- 6. Write down the answers to the following questions. (Derivations are not required.)
 - (1) (3%) Let the instantaneous position of a particle in motion be given by the following vector function: $\underline{\mathbf{r}}(t) = t \, \underline{\mathbf{i}} + t \sin t \, \underline{\mathbf{j}} + t \cos t \, \underline{\mathbf{k}}$. What is the tangential component of the particle's acceleration?
 - (2) (3%) In the above problem, what is the normal component of the particle's acceleration?
 - (3) (3%) Find the angle between the surfaces $x^2 + y^2 + z^2 = 2$ and $z = x^2 + y^2 2$ at the point (1, -1, 0).
 - (4) (3%) Let $\underline{\mathbf{F}} = \frac{y}{x^2 + y^2} \underline{\mathbf{i}} + \frac{-x}{x^2 + y^2} \underline{\mathbf{j}}$ be a 2-D vector field. Evaluate $\oint_C \underline{\mathbf{F}} \cdot d\underline{\mathbf{r}}$ over a closed contour C given by:

國立臺灣大學99學年度碩士班招生考試試題

科目:工程數學(B)

題號:218

共 2 頁之第

- (5) (3%) Let $\underline{\mathbf{v}}(x, y, z) = \frac{x}{vz} \underline{\mathbf{i}} + \frac{y}{zx} \underline{\mathbf{j}} \frac{z}{xv} \underline{\mathbf{k}}$. Evaluate the integral $\iint_{S} \underline{\mathbf{n}} \cdot (\nabla \times \underline{\mathbf{v}}) dS$ over the surface of a sphere S given by: $(x-2)^2 + (y-2)^2 + (z-2)^2 = 1$. ($\underline{\mathbf{n}}$ denotes unit vector normal to the surface of the sphere S.)
- 7. Let z = x + iy denote the complex variable, $\overline{z} = x iy$ the complex conjugate of z, and f(z) a complex function. Answer the following questions. (Derivations are not required.)
 - (1) (3%) $\oint_C dz/\bar{z} = 2\pi i$ for any simple closed curve C enclosing $\bar{z} = 0$. (True or False)
 - (2) (3%) Find the residue of the complex function $f(z) = \frac{e^{iz}}{z^4 \cos z}$ at z = 0.
 - (3) (3%) If the Laurent series expansion of $f(z) = z^2/(z^2+1)$ about z=i is denoted by $\sum_{n=+\infty}^{n=+\infty} a_n(z-i)^n$,

find
$$\left| \sum_{n=-\infty}^{n=+\infty} a_n \right| = ?$$

- (4) (3%) Evaluate the complex integral $\oint_C \frac{e^{-i\overline{z}}}{\overline{z}} dz$ over C: |z| = 1.
- (5) (3%) Evaluate the real integral $\int_{\theta=0}^{\theta=2\pi} \frac{d\theta}{1+a^2-2a\cos\theta} \quad \text{with} \quad 0 < a < 1.$