國立臺灣大學99學年度碩士班招生考試試題

科目:電子學(A)

題號: 242

- 1. Consider the circuit in Fig. 1, $V_{DD} = V_{SS} = 10 \text{ V}$, I = 0.5 mA, $R_G = 4.7 \text{ M}\Omega$, $R_D = 15 \text{ k}\Omega$, $V_t = 1.5 \text{ V}$, and $k_n'(W/L) = 1 \text{ mA/V}^2$. (15%)
- (a) Find V_{OV} , V_{GS} , V_G , V_S , and V_D . (5%)
- (b) Calculate g_m and r_o assuming that $V_A = 75$ V. (3%)
- (c) What is the maximum possible signal swing at the drain for which the MOSFET remains saturation? (2%)
- (d) Use this circuit and ground the gate as the common-gate amplifier, find R_{in} (input resistance), R_{out} (output resistance), A_{vo} (open-circuit voltage gain), A_{v} (voltage gain), and G_{v} (overall voltage gain) for the load resistance $R_{L} = 15 \text{ k}\Omega$, and $R_{sig} = 50 \Omega$, where R_{sig} is the internal resistance of the signal source. (5%)
- 2. Figure 2 shows a signal source connected to the input of an amplifier. Here R_s is the source resistance, and R_i and C_i are the input resistance and input capacitance, respectively, of the amplifier. (15%)
- (a) Find the transfer function $V_i(s)/V_s(s)$. (5%)
- (b) Is this a high-pass or low-pass network? (2%)
- (c) Sketch Bode magnitude and phase plot of the transfer function as $R_s = 20 \text{k}\Omega$, $R_i = 80 \text{k}\Omega$, and $C_i = 5 \text{ pF}$. (6%)
- (d) What is the 3-dB frequency in (c)? (2%)
- 3. Based on standard semiconductor fabrication technology, write down the brief run sheet and draw the cross sections of each step to fabricate a typical n-well CMOS as shown in Fig. 3. (10%)
- 4. Figures 4(a) and 4(b) are the physical structure of the enhancement-type MOSFET. (15%)
- (a) Derive the i_D - v_{DS} characteristics for a NMOS transistor in the triode region and saturation region. (10%)

$$i_D = k_n' \frac{W}{L} \left[(v_{GS} - V_t) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$
 (Triode region)

$$i_D = \frac{1}{2} k_n' \frac{W}{L} (v_{GS} - V_t)^2$$
 (Saturation region)

- (b) Show the gate-to channel capacitance is approximately $\frac{2}{3}WLC_{OX}$ as the MOSFET operates in saturation, where $C_{OX} = \varepsilon_{ox}/t_{ox}$ is the gate (or oxide) capacitance per unit gate area. (5%)
- 5. Figure 5 is a particular cascoded current mirror, and all transistors have $V_t = 0.6$ V, $\mu_n C_{ox} = 200 \,\mu\text{A/V}^2$, $L = 1 \,\mu\text{m}$, and $V_A = 20$ V. Width $W_1 = W_4 = 2 \,\mu\text{m}$, and $W_2 = W_3 = 40 \,\mu\text{m}$. The reference current I_{REF} is 25 μ A. (15%)
- (a) What is the output current? (3%)
- (b) What are the voltages at the gates of Q_2 and Q_3 ? (3%)
- (c) What is the lowest voltage at the output for which current-source operation is possible? (3%)
- (d) What are the values of g_m and r_o of Q_2 and Q_3 ? (3%)
- (e) What is the output resistance of the mirror? (3%)
- 6. Figure 6 shows an active-loaded bipolar differential amplifier employing a folded cascode stage $(Q_3 \text{ and } Q_4)$ and a Wilson current mirror load $(Q_5, Q_6, \text{ and } Q_7)$. Find G_m and R_{o4} , R_{o5} , R_o and A_d for the differential amplifier in below figure under the following conditions: I = 1 mA, $\beta_P = 50$, $\beta_N = 100$, and $V_A = 100 \text{ V}$. (15%)
- 7. Give two different realizations of the exclusive-OR function $Y = \overline{A}B + A\overline{B}$ in which the pull-down network (PDN) and the pull-up network (PUN) are dual networks. (15%)

國立臺灣大學99學年度碩士班招生考試試題

科目:電子學(A)

題號:242

