題號: 396

題號: 396

共 乙 頁之第 頁

第一大題 1-5 選擇題考生請用 2B 鉛筆作答於答案卡,並先詳閱答案卡上之「畫記說明」。 Questions 1-5 are mixed with single-choice and multiple-choice questions.

1. (10%) Suppose a 32-pound weight stretches a spring 2 feet. If the weight is release from rest at the equilibrium position, find the equation of motion x(t) if an impressed force $f(t) = \sin(t)$ acts on the system for $0 \le t < 2\pi$, and is then removed. Ignore any damping forces.

(A)
$$f(t) = \sin(t) - \sin(t)U(t - 2\pi)$$
, (B) $x(t) = \frac{-1}{10}\sin 4t + \frac{1}{30}\sin t$, $0 \le t < 2\pi$,

(C)
$$x(t) = \frac{-1}{60}\sin 4t + \frac{1}{15}\sin t, 0 \le t < 2\pi$$
, (D) $x(t) = \frac{-1}{30}\sin 4t + \frac{1}{5}\sin t, 0 \le t < 2\pi$,

2. (10%) A uniform 10-foot-long chain is coiled loosely on the ground. One end of the chain is pulled vertically upward by means of constant force of 2 pounds. The chain weights 1 pound per foot. Determine the height of the end above ground level, x(t), at

(A)
$$x \frac{d^2x}{dt^2} + (\frac{dx}{dt})^2 + 16x = 160$$
, (B) $x \frac{d^2x}{dt^2} + (\frac{dx}{dt})^2 + 32x = 64$,

(C)
$$x \frac{d^2x}{dt^2} + (\frac{dx}{dt})^2 + 32x = 160$$
, (D) $x = 3 - 3(1 - \frac{4}{3}t)^2$, (E) $x = \frac{15}{2} - \frac{15}{2}(1 - \frac{4\sqrt{10}}{15}t)^2$

3. (10%) A semi-infinite plate coincides with the region defined by $0 \le x \le \pi, y \ge 0$

The right end is held at temperature e^{-y} , and the left end is held at temperature zero. The bottom of the plate is held at temperature f(x). Find the steady-state temperature

in the plate:
$$u(x,y) = \sum_{n=1}^{\infty} \frac{2}{\pi} A_n e^{-ny} + \frac{2}{\pi} \int_0^{\infty} (\alpha) \sin(\alpha y) d\alpha$$

(A)
$$A_n = \sin(nx) \int_0^\pi f(x) \sin(nx) dx$$
, (B) $A_n = \int_0^\pi f(x) \sin(nx) dx$,

(C)
$$B(\alpha) = \frac{\sinh(\alpha x)}{(1 + \alpha^2) \sinh(\alpha \pi)}$$
, (D) $B(\alpha) = \frac{\alpha \sinh(\alpha x)}{(1 + \alpha^2) \sinh(\alpha \pi)}$

4. (10%) Use the power series method to solve the DE xy'' + 2y' - xy = 0, $y = c_1y_1 + c_2y_2$

(A)
$$y_1 = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1}$$
, (B) $y_1 = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n}$, (C) $y_2 = \sum_{n=0}^{\infty} \frac{1}{(2n)!} x^{2n}$,

(D)
$$y_2 = \sum_{n=0}^{\infty} \frac{1}{(2n)!} x^{2n-1}$$
, (E) $y_1 = \frac{\sinh(x)}{x}$

5. (10%) Solve the given equation $\int_{0}^{\infty} f(\tau)f(t-\tau)d\tau = 6t^3$,

(A)
$$f(t) = 6t$$
, (B) $f(t) = 3\sqrt{2}t$, (C) $f(t) = \sqrt{6}t$, (D) $f(t) = -6t$, (E) $f(t) = -2t$

國立臺灣大學99學年度碩士班招生考試試題

科目:工程數學(M)

題號: 396

題號: 396

共 2 頁之第 2 頁

第二大題考生應作答於『試卷』

- 1. (20%) Label the following statements as being true or false. (No explanation is needed. Each correct answer gets 2% and each wrong answer gets 0%):
 - (a) A set V is a vector space if V satisfies the following properties: (i) V has a zero vector; (ii) whenever \mathbf{u} and \mathbf{v} belong to V, then $\mathbf{u} + \mathbf{v}$ belongs to V; and (iii) whenever \mathbf{v} belongs to V and c is a scalar, then $c\mathbf{v}$ belongs to V.
 - (b) Let B be an $m \times m$ invertible matrix and A be an $m \times n$ matrix. Then A and BA have the same reduced row echelon form.
 - (c) An $n \times n$ matrix A is diagonalizable if and only if BAB^T is diagonalizable.
 - (d) Let A be $n \times n$. Then rank $A = \operatorname{rank} A^2$
 - (e) If B is obtained from A by applying a series of elementary row operations, then A and B have the same reduced row echelon form.
 - (f) Let $S = \{v_1, v_2, \dots, v_k\}$ be a linearly independent subset of \mathbb{R}^n and u be a vector in S^{\perp} . Then $\{u, v_1, v_2, \dots, v_k\}$ is linearly independent.
 - (g) Let A be an $m \times n$ matrix. If $A\mathbf{u} = A\mathbf{v}$ implies $\mathbf{u} = \mathbf{v}$, then rank A = n.
 - (h) If v is an eigenvector of A^2 , then v is an eigenvector of A.
 - (i) Let A be $n \times n$. Then det(2A) = 2 det A.
 - (j) If v is not a linear combination of $\{u_1, u_2, \ldots, u_k\}$, then rank $[u_1 u_2 \ldots u_k v]$ = 1+ rank $[u_1 u_2 \ldots u_k]$.
- 2. Let $\mathcal{B} = \{e^t, te^t, t^2e^t\}$, $V = \operatorname{Span} \mathcal{B}$, and T be a linear operator on V defined by T(f) = f'(t).
 - (a) (5%) Find $[T]_{\mathcal{B}}$, the matrix representation of T with respect to \mathcal{B} .
 - (b) (5%) Find the eigenvalues of T and a basis for each eigenspace.
 - (c) (5%) Is T invertible? If it is, find $T^{-1}(c_1e^t + c_2te^t + c_3t^2e^t)$.
- 3. Let $V_1 = \operatorname{Span} \{v_1, v_2\}$ and $V_2 = \operatorname{Span} \{v_3, v_4\}$, where

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}.$$

- (a) (5%) Find an orthogonal basis for V_1 .
- (b) (5%) Find a basis for Null ($[\mathbf{v}_3 \ \mathbf{v}_4]^T$).
- (c) (5%) Let W be the intersection of V_1 and V_2 . Find a basis for W.