題號:403

國立臺灣大學99學年度碩士班招生考試試題

科目:離散數學(B)

題號: 403 共 6 頁之第 / 頁

	※ 注意:請於試卷內之「選擇題作答區」依序作答。				
	選擇題 (單選; 每題答對得 2 分; 答錯或未答得 0 分)				
1.	Suppose the variable x represents students, $F(x)$ means " x is a freshman", and $M(x)$ means " x is a math major". What does the formula $\neg \forall x (\neg F(x) \lor \neg M(x))$ mean: (A) Some freshmen are math majors. (B) Every math major is a freshman. (C) No math major is a freshman. (D) Some freshmen are not math majors. (E) None of the above.				
2.	 Which of the following statements is not correct? (A) Propositional formula (A ∧B)∨(¬A)∨(¬B) is a tautology. (B) Propositional logic does not have a sound and complete deduction system. (C) First-order logic is more powerful than propositional logic. (D) "2+2=0" is a proposition. (E) Propositional formula p → (q → r) is satisfiable. 				
3.	From the following four, $ \begin{array}{ccccccccccccccccccccccccccccccccccc$				
4.	Using c for "it is cold", r for "it is rainy", and w for "it is windy", which of the following propositional formula means "It is rainy only if it is windy and cold" in symbols? (A) $r \to (w \land c)$ (B) $\neg r \to (w \lor \neg c)$ (C) $(w \land c) \to r$ (D) $r \land (w \land c)$ (E) None of the above				
5.	Let predicate $P(m,n)$ mean " $m \le n$ ", where the universe of discourse for m and n is the set of nonnegative integers. Among the following four first-order formulas, how many of them are true? $\exists nP(n,0); \forall nP(0,n); \exists n\forall mP(m,n); \forall m\exists nP(m,n),$ (A) 0 (B) 1 (C) 2 (D) 3 (E) 4				
6.	Consider the following five sets: N (the set of natural numbers), Z (the set of integers), Q (the set of rational numbers), R (the set of real numbers), and 2^N (the power set of N), how many of the above five sets are countably infinite? (A) 0 (B) 1 (C) 2 (D) 3 (E) 4				
7.	Define predicate $P(x, y)$ to be " $x + 2y = xy$ ", where x and y are integers. How many of the following four first-order formulas $\forall x \exists y P(x,y)$, $\exists x \forall y P(x,y)$, $\forall y \exists x P(x,y)$, $\exists y \forall x P(x,y)$ are "true"? (A) 0 (B) 1 (C) 2 (D) 3 (E) 4				
8.	Let $S=\{\emptyset, \{\emptyset, \{\emptyset\}\}\}$. What is 2^S (i.e., the power set of S)? (A) $\{(\emptyset, \emptyset), (\emptyset, \{\emptyset\}), (\{\emptyset\}, \emptyset), (\{\emptyset\}, \{\emptyset\})\}$ (B) $\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}\}\}$ (C) $\{\emptyset, \{\emptyset, \{\emptyset\}\}\}$ (D) $\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}$ (E) None of the above				

120				0.000	
9.	Let $S=\{\emptyset,$	$\{\emptyset\}\}.$	What is the	e value of Sx	$\langle \{\emptyset\} ?$

- (A) 0
- (B) 1
- (C) 2
- (E) None of the above

10. Consider a binary relation $S = \{(a, c), (b, d), (d, a)\}$. What is S^3 ?

(D) 3

- $\{(a, a), (a, c), (b, c), (c, c), (d, b), (d, d)\}$
- (B) $\{(b, c)\}$
- (C) $\{(a, c), (b, a), (d, b), (d, d)\}$
- (D) $\{(a, a), (a, d), (d, c)\}$
- (E) None of the above

11. Define a binary relation R(x,y) on the set of real numbers as: "x = y + 1 or x = y - 1". Consider the following four properties: reflexive, symmetric, anti-symmetric, and transitive. R(x,y) satisfies how many of the above four properties?

- (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E)4

12. Suppose
$$|A| = n$$
. What is the number of symmetric binary relations on A ?

- (A) $2^{n(n-1)/2}$ (B) $2^{n(n+1)/2}$ (C) 2^n (D) $2^{n(n-1)}$

- (E) None of the above

13. Suppose |A| = n. What is the number of reflexive, symmetric binary relations on A. (A) $2^{n(n-1)/2}$ (B) $2^{n(n+1)/2}$ (C) 2^n (D) $2^{n(n-1)}$ (E) None of the above

14. If
$$R = \{(1,2),(1,4),(2,3),(3,1),(4,2)\}$$
, what is the size (i.e., the number of elements) of the symmetric closure of R ?

- (A)8
- (B) 9

- (C) 10 (D) 11 (E) None of the above

15. The symmetric difference of two sets
$$A$$
 and B (denoted by $A \oplus B$) is the set of elements which are in A or B , but not in both. How many of the following four statements are correct?

- {1, 3, 5} \oplus {1, 2, 3} = {2,5}
- $-A \oplus B = (A \cup B) (A \cap B)$
- $--A \oplus (B \oplus C) = (A \oplus B) \oplus C$
- $-- (A \oplus B) \oplus B = A$
- (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) 4

16. Consider $f: N \to Z$ where

$$f(n) = \begin{cases} \frac{-n}{2}, & n \text{ ever} \\ \frac{n-1}{2}, & n \text{ odd} \end{cases}$$

Which of the following is correct?

- (A) f(n) is onto but not 1-1
- (B) f(n) is onto and 1-1
- (C) f(n) is 1-1 but not onto
- (D) f(n) is not onto and not 1-1
- (E) f(n) is not a function.

17. How many permutations of the seven letters A,B,C,D,E,F,G have A immediately to the left of E?

- $(A) 2 \cdot 5!$
- (B) 6!
- (C) $5 \cdot 6!$
- (D) $7! 2 \cdot 6!$
- (E) None of the above

18. How many one-to-one functions are there from a set with three elements to a set with eight elements?

- (A) 512
- (B) 336
- (C) 128
- (D) 270
- (E) None of the above

19. What is the largest coefficient in the expansion of $(x + 1)^6$?

- (A) 6
- (B) 15
- (C) 20
- (D) 30
- (E) None of the above

科目:離散數學(B)

題號: 403 共 6 頁之第 3

```
20. Suppose g: A \to B and f: B \to C where A = \{1, 2, 3, 4\}, B = \{a, b, c\}, C = \{2, 8, 10\}, \text{ and } g \text{ and } f \text{ are } f \in A = \{1, 2, 3, 4\}, B = \{a, b, c\}, C = \{2, 8, 10\}, C = \{2, 8, 
                     defined by g = \{(1,b),(2,a),(3,b),(4,a)\} and f = \{(a,8),(b,10),(c,2)\}. What is f \circ g?
                     (A) \{(2,c),(8,a),(10,b)\}
                    (B) \{(2,2),(8,8),(10,10)\}
                    (C) \{(1,10),(2,8),(3,10),(4,8)\}
                    (D)
                                                      \{(1,1),(2,1),(3,2),(4,1)\}
                                                None of the above
                    (E)
21. What is the value of 50! mod 49!?
                    (A) 0
                                                                               (B) 1
                                                                                                                                    (C) 25
                                                                                                                                                                                   (D) 48
                                                                                                                                                                                                                                                      (E) None of the above
22. What is the number of times that "hello" is printed after the following program is executed?
```

i := 1, j := 1while $i \le n$ begin while $j \leq i$ begin print "hello";

j := j + 1end i := i + 1end.

(C) $\Theta(n^2)$ (A) $\Theta(1)$ (B) $\Theta(n)$ (D) $\Theta(nlog_2n)$ (E) None of the above

23. Which of the following functions has the largest growth rate asymptotically?

(A) $0.1n^{1.5} + 3n$ (B) $\frac{n^2}{1}$ $(0.001)^n$ (E)

24. Consider a binary relation R on $\{1,2,3,4\}$ whose matrix representation is $M_R =$

(E) 4

For the following four properties: reflexive, symmetric, anti-symmetric, and transitive, R satisfies how many of them?

(A) 0(B) 1 (C) 2

25. Given a partial order relation R with its Hasse diagram shown in Figure 1. What is $hib(\{g, j, m\})$? (A) $\{l, m\}$ (B) $\{m\}$

(D) 3

(C) {l} (D) $\{g, j, m\}$ (E) None of the above

26. Consider Figure 1 again. What is the set of least elements of R?

(A) $\{a\}$ (B) $\{a, b, c\}$ $(C) \{c\}$

(D) Ø (E) None of the above

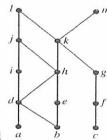


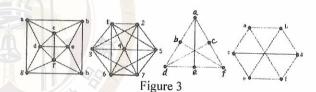
Figure 1

題號:403

國立臺灣大學99學年度碩士班招生考試試題

科目:離散數學(B)

題號: 403 共 6 頁之第 4 頁


 27. Consider relation R in Figure 1 again. Which of the following is false? (A) aRa (B) eRm (C) R does not have a greatest element (D) R is a lattice (E) None of the above
28. The chromatic polynomial $\chi_G(k)$ of a graph G is the number of proper colorings of G with k colors. Consider graph G in Figure 2. What is $\chi_G(k)$? (A) $k(k-1)(k-2)(k-3)$ (B) k^4 (C) $k^2(k-1)^2$ (D) $k(k-1)^3$ (E) None of the above
29. What is the number of positive integers not exceeding 100 (i.e., ≤100) that are not divisible by 5 or by 7 (A) 65 (B) 66 (C) 67 (D) 68 (E) None of the above
30. What is the transitive closure of <i>R</i> ={(1,1), (2,2), (3,3), (2,3), (3,1)}? (A) {(1,1), (2,2), (3,3), (2,3), (3,1)} (B) {(1,1), (2,1), (2,2), (3,3), (2,3), (3,1)} (C) {(1,1), (2,2), (3,3) } (D) Ø (E) None of the above
31. Which of the following statements is correct? (A) If $A \cup C = B \cup C$, then $A = B$ (B) If $A \cap C = B \cap C$, then $A = B$. (C) $\{\emptyset, \{a\}, \{\emptyset, a\}\}$ is the power set of some set. (D) $\emptyset \subseteq \{\emptyset\}$ (E) $A \cap (B \cup C) = (A \cup B) \cap (A \cup C)$.
 32. Which of the following statements is correct? (A) The union of an infinite number of countably infinite sets is always countably infinite. (B) A x B is always countably ininfite, if both A and B are countably infinite. (C) If f: A → B and B is countable infinite, then A is always countably infinite. (D) If A is countably infinite, then 2^A is always countably infinite (E) None of the above is correct.
33. For complete bipartite graph $K_{m,n}$ to be planar, what is the maximum value of $m+n$? (A) 5 (B) 6 (C) 7 (D) 8 (E) None of the above
 34. If f: X → Y is a one-to-one and onto function, and Y is a proper subset of X, which of the following statements is correct? (A) X must be countably infinite. (B) Y must be countably infinite. (C) X must be infinite. (D) The cardinality of X is larger than Y. (E) None of the above
35. What is the number of distinct binary trees with 4 nodes? (A) 10 (B) 12 (C) 14 (D) 16 (E) None of the above

國立臺灣大學99學年度碩士班招生考試試題

科目:離散數學(B)

ら 頁之第

- 36. Let (S, \lesssim) be a POSET. (S, \lesssim) is well-ordered if \lesssim is a total ordering such that every nonempty subset of S Which of the following is well-ordered (here ≤ denotes the "less than has a least element according to \lesssim . or equal to" relation in arithmetic)?
 - (A) (Z, \leq) , where Z is the set of integers
 - (B) (Q, \leq), where Q is the set of rational numbers
 - (C) (N×N, $\stackrel{<}{\sim}$), where $(a, b) \stackrel{<}{\sim} (c, d)$ if and only if $a \leq c$ and $b \leq d$, where N is the set of natural
 - (D) ([0,1], \leq), where [0,1] denotes the set $\{x \mid 0 \leq x \leq 1, x \text{ is a real number}\}$
 - (E) None of the above
- 37. If a planar graph has 12 vertices, each of degree 3, how many edges and faces does the graph have?
 - (A) number of edges = 18; number of faces = 7;
 - (B) number of edges = 18; number of faces = 8;
 - (C) number of edges = 36; number of faces = 25;
 - (D) number of edges = 36; number of faces = 26;
 - (E) None of the above
- 38. Consider the following recurrence relation: $f(n+2)-3f(n+1)+2f(n)=2^n$ subject to f(0)=1, f(1)=4. Suppose we know that the solution of the above recurrence relation is of the form $f(n) = an2^n + b2^n + c$, where a, b, and c are three constants. What is the value of a+b+c?
 - (A) 1
- (B) 1.5
- (C) 2.5
- (E) None of the above
- 39. Among the four graphs displayed in Figure 3, how many of them are planar?
 - (A) 0
- (B) 1
- (C)2
- (D) 3 (E) 4

- 40. Which of the following is a possible sequence of vertex degrees of an undirected simple graph?
 - (A) 2, 2, 2, 3, 4, 4
 - (B) 0, 1, 2, 3, 4, 5, 6, 7
 - (C) 1, 1, 2, 4
 - (D) 0, 1, 2, 2, 3
 - (E) None of the above
- 41. Consider the graph G shown in Figure 4. Which of the following is true:
 - (A) G has an Euler circuit but no Hamilton circuit.
 - (B) G has an Euler path but no Euler circuit.
 - (C) G has an Euler circuit and a Hamilton circuit.
 - (D) G has no Euler circuit and no Hamilton circuit.
 - (E) None of the above
- 42. How many solutions does the equation $x_1+x_2+x_3=13$ have, where x_1 , x_2 , x_3 are nonnegative integers less than 6? (D) 8

(B)6

(C)7

- (E) None of the above
- 43. Which one is the smallest partial order relation on {1,2,3} that contains (3,2), (1,3)? $(A) \{ (3,2), (1,3) \}$
- (B) $\{(1,1),(2,2),(3,3),(3,2),(2,3),(1,3),(3,1),(1,2),(2,1)\}$
 - (C) $\{(1,1),(2,2),(3,3),(3,2),(1,3),(1,2)\}$
 - (D) $\{(1,1), (3,2), (1,3), (2,3), (3,1)\}$
 - (E) None of the above

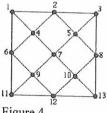


Figure 4

44. Consider the following four statements:

If $a \equiv b \pmod{m}$, and $a \equiv c \pmod{m}$, then $a \equiv b + c \pmod{m}$.

If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv b + d \pmod{m}$.

If $a \equiv b \pmod{m}$, then $2a \equiv 2b \pmod{m}$.

If $a \equiv b \pmod{m}$, then $2a \equiv 2b \pmod{2m}$

(C) 2

how many of them are correct?

- (A) 0
- (B) 1
- (D)3
- 45. Let Q_n denote the *n*-dimensional hypercube. (Q_3 is shown in Figure 5.)

What is the number of edges of Q_n ?

- (A) 2^{n+1} 4 (B) $n2^{n-1}$ (C) (n+1)n
- - (D) 4n (E) None of the above

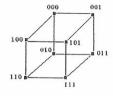


Figure 5

- 46. Which of the following recurrence relations characterizes the so-called Fibonacci numbers:
 - (A) $a_n = 2a_{n-1} a_{n-2}$, $a_1 = 1$, $a_2 = 1$.
 - (B) $a_{n-1} = a_n + a_{n-2}$, $a_1 = 1$, $a_2 = 1$.
 - (C) $a_n = a_{n-1} + a_{n-2}$, $a_1 = 1$, $a_2 = 1$.
 - (D) $a_n = na_{n-1}$, $a_1 = 1$.
 - (E) None of the above
- 47. Given two functions $g: A \rightarrow B$ and $f: B \rightarrow C$, which of the following is not correct:
 - (A) If both f and g are onto, so is $f \circ g$.
 - (B) If both f and g are one-to-one, so is $f \circ g$.
 - (C) If both f and $f \circ g$ are one-to-one, g need not be on-to-one.
 - (D) If both g and $f \circ g$ are onto, f must be onto.
 - (E) $f \circ g$ is a function from A to C.
- 48. Given a finite set S, consider $(2^S, \subseteq)$. Which of the following is not correct:
 - (A) Ø is the least element.
 - (B) S is the greatest element
 - (C) ⊆ is a total ordering
 - (D) $(2^S, \subseteq)$ is a lattice.
 - (E) $A \cup B$ is the least upper bound of $\{A, B\}$, where $A \subseteq S$ and $B \subseteq S$.
- 49. Which of the following is true?
 - (A) A (B C) = (A B) C.
 - (B) (A-C)-(B-C)=A-B.
 - (C) $A \cup (B \cap C) = (A \cap B) \cup (A \cap C)$.
 - (D) $A \cup \overline{B} \cup \overline{A} = \overline{A}$
 - (E) If A C = B C, then A = B.
- 50. What is the value of $\sum \sum ij$.?
 - (A) 22

- (C) 24 (D) 25
- (E) None of the above