國立臺灣大學98學年度轉學生招生考試試題

題號: 18 科目:微積分(A) 題號: 18

共 | 頁之第 | 頁

(1) (16 %) Let f(x) and g(x) be two differentiable functions such that

$$\frac{d}{dx}f(x) = -g(x),$$

$$\frac{d}{dx}xg(x) = xf(x).$$

- (a) Show that between two consecutive roots of f(x) = 0, g(x) = 0 has a root.
- (b) Show that between two consecutive roots of g(x) = 0, f(x) = 0 has a root.
- (2) (16 %) A man can swim at a m/sec and run at b m/sec. If he stands at point A = (50, 0) on the edge of a circular swimming pool of radius 50 m with its center at the origin, find his optimum path from A to B = (0, 50).
- (3) (17 %) Let $\{a_n\}_{n=1}^{\infty}$ be a sequence defined by $a_1 = 1$, $a_{n+1} = 1 + \frac{1}{1+a_n}$, $n \ge 1$. (a) Show that $\lim_{n\to\infty} a_n$ exists.
 - (b) Find $\lim_{n\to\infty} a_n$.
- (4) (17 %) Let S be the surface $z = 4 x^2 y^2$. The temperature function in space S is $T(x, y, z) = x^2y + y^2z + 2x + 4y + z$. Let P = (1, 1, 2) be a point in S. Among all the possible directions tangential to S at P, which direction will make the rate of change of temperature at P a maximal?
- (5) (17%) Find the volume of the solid bounded by the surface $(x^2 + y^2 + z^2)^2 = a^2(x^2 + y^2 z^2)$, a > 0.
- (6) (17 %) Let C be the curve $\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k}$, $0 \le t \le 2\pi$. Let S be the surface obtained by connecting any point $(x, y, z) \in C$ to (0, 0, z) with a line segment. Find the area of S.

試題隨卷繳回